1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 10 of 15
  • Thumbnail Image
    Publication
    UCH
    Bacteriophage application for "Salmonella" control in poultry and its implications on their microbiota and metabolome2022-12-19

    Salmonella has been recognized as one of the most important zoonotic pathogens worldwide, being poultry derived products the main source of human infection. Among the most promising tools for Salmonella control at the field level in poultry production are included bacteriophages (or phages). However, little is known about the phage application impact on the rest of the gut microbiota. In this sense, new studies suggest that phage application may affects the gastrointestinal ecology homeostasis. Therefore, the general objective of this doctoral thesis was to apply bacteriophages for Salmonella control in broiler production, focusing on their effect on intestinal health, by means of genomic sequencing and metabolomic study. To achieve this goal, two different parts were performed. The first part studied the phage gastrointestinal dynamics in Salmonella-free broilers and its influence on microbiota and metabolome, meanwhile the second part studied the phage dynamics in Salmonella-infected broilers and its influence on microbiota and metabolome. The results aim to provide important insights into the use of phages as a preventative and biocontrol strategy against Salmonella infection from farm-to-fork.

  • Thumbnail Image
    Publication
    UCH
    Liver steatosis and steatohepatitis alter bile acid receptors in brain and induce neuroinflammation a contribution of circulating bile acids and blood-brain barrier2022-11-17

    A tight relationship between gut-liver diseases and brain functions has recently emerged. Bile acid (BA) receptors, bacterial-derived molecules and the blood-brain barrier (BBB) play key roles in this association. This study was aimed to evaluate how non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) impact the BA receptors Farnesoid X receptor (FXR) and Takeda G-protein coupled receptor 5 (TGR5) expression in the brain and to correlate these effects with circulating BAs composition, BBB integrity and neuroinflammation. A mouse model of NAFLD was set up by a high-fat and sugar diet, and NASH was induced with the supplementation of dextran-sulfate-sodium (DSS) in drinking water. FXR, TGR5 and ionized calcium-binding adaptor molecule 1 (Iba-1) expression in the brain was detected by immunohistochemistry, while Zonula occludens (ZO)-1, Occludin and Plasmalemmal Vesicle Associated Protein-1 (PV-1) were analyzed by immunofluorescence. Biochemical analyses investigated serum BA composition, lipopolysaccharidebinding protein (LBP) and S100 protein (S100 ) levels. Results showed a down-regulation of FXR in NASH and an up-regulation of TGR5 and Iba-1 in the cortex and hippocampus in both treated groups as compared to the control group. The BA composition was altered in the serum of both treated groups, and LBP and S100 were significantly augmented in NASH. ZO-1 and Occludin were attenuated in the brain capillary endothelial cells of both treated groups versus the control group. We demonstrated that NAFLD and NASH provoke different grades of brain dysfunction, which are characterized by the altered expression of BA receptors, FXR and TGR5, and activation of microglia. These effects are somewhat promoted by a modification of circulating BAs composition and by an increase in LBP that concur to damage BBB, thus favoring neuroinflammation.

  • Thumbnail Image
    Publication
    UCH
    Gut-brain axis insights from hippocampal neurogenesis and brain tumor development in a mouse model of experimental colitis induced by dextran sodium sulfate2022-09-29

    Chronic inflammatory bowel disorders (IBD) are idiopathic diseases associated with altered intestinal permeability, which in turn causes an exaggerated immune response to enteric antigens in a genetically susceptible host. A rise in psych cognitive disorders, such as anxiety and depression, has been observed in IBD patients. We here report investigations on a model of chemically induced experimental colitis by oral administration of sodium dextran sulfate (DSS) in C57BL/6 mice. We investigate, in vivo, the crosstalk between the intestine and the brain, evaluating the consequences of intestinal inflammation on neuroinflammation and hippocampal adult neurogenesis. By using different DSS administration strategies, we are able to induce acute or chronic colitis, simulating clinical characteristics observed in IBD patients. Body weight loss, colon shortening, alterations of the intestinal mucosa and fecal metabolic changes in amino acids-, lipid- and thiamine-related pathways are observed in colitis. The activation of inflammatory processes in the colon is confirmed by macrophage infiltration and increased expression of the proinflammatory cytokine and oxidative stress marker (Il-6 and iNOS). Interestingly, in the hippocampus of acutely DSS-treated mice, we report the upregulation of inflammatory-related genes (Il-6, Il-1b, S-100, Tgf -b and Smad-3), together with microgliosis. Chronic DSS treatment also resulted in neuroinflammation in the hippocampus, indicated by astrocyte activation. Evaluation of stage-specific neurogenesis markers reveals deficits in the dentate gyrus after acute and chronic DSS treatments, indicative of defective adult hippocampal neurogenesis. Finally, based on a possible causal relationship between gut-related inflammation and brain cancer, we investigate the impact of DSS-induced colitis on oncogenesis, using the Ptch1+/􀀀/C57BL/6 mice, a well-established medulloblastoma (MB) mouse model, finding no differences in MB development between untreated and DSS-treated mice. In conclusion, in our experimental model, the intestinal inflammation associated with acute and chronic colitis markedly influences brain homeostasis, impairing hippocampal neurogenesis but not MB oncogenesis.

  • Thumbnail Image
    Publication
    UCH
    Research note : persistent "Salmonella" problems in slaughterhouses related to clones linked to poultry companies2022-08-11

    Salmonellosis remains one of the main foodborne zoonoses in Europe, with poultry products as the main source of human infections. The slaughterhouse has been identified as a potential source for Salmonella contamination of poultry meat. Despite the mandatory programme of the EU, there are companies with persistent Salmonella that are unable to remove the bacteria from their processing environment, compromising the entire production line. In this context, an intensive sampling study was conducted to investigate a slaughterhouse with persistent Salmonella problems, establishing the genetic relationship among Salmonella strains isolated during the slaughter process. A total of 36 broiler flocks were sampled during processing at the slaughterhouse. Salmonella was identified based on ISO 6579-1:2017 (Annex D), serotyped by Kauffman-White-Le-Minor technique, and the genetic relationship was assessed with ERIC-PCR followed by PFGE. The outcomes showed that 69.4% of the batches sampled carried Salmonella upon arrival at the slaughterhouse and that 46.3% of the different samples from carcasses were contaminated with Salmonella. The two serovars isolated at the different steps in the slaughterhouse were Enteritidis (98.2%) and Kentucky (1.8%). Pulsed-field gel electrophoresis analysis revealed a low genetic diversity, with all S. Enteritidis isolates showing a nearly identical pulsotype (similarity >85%) and S. Kentucky strains showed the same XbaI PFGE profile (95.0% genetic similarity). The results of this study showed a high genetic relationship among isolates recovered from carcasses and environmental samples in the slaughterhouse from both Salmonella-positive and Salmonella- free flocks. Salmonella strains re-circulated across to poultry flocks and re-entered the slaughterhouse to survive on the processing line. Thus, it is necessary to implement molecular diagnosis methods in time at the field level to determine the Salmonella epidemiology of the flock, to make rapid decisions for the control of Salmonella and prevent entry into the slaughterhouse environment.

  • Thumbnail Image
    Publication
    UCH
    Examining the effects of "Salmonella" phage on the caecal microbiota and metabolome features in "Salmonella"-free broilers2022-11-10

    Bacteriophages selectively infect and kill their target bacterial host, being a promising approach to controlling zoonotic bacteria in poultry production. To ensure confidence in its use, fundamental questions of safety and toxicity monitoring of phage therapy should be raised. Due to its high specificity, a minimal impact on the gut ecology is expected; however, more in-depth research into key parameters that influence the success of phage interventions has been needed to reach a consensus on the impact of bacteriophage therapy in the gut. In this context, this study aimed to investigate the interaction of phages with animals; more specifically, we compared the caecum microbiome and metabolome after a Salmonella phage challenge in Salmonella-free broilers, evaluating the role of the phage administration route. To this end, we employed 45 caecum content samples from a previous study where Salmonella phages were administered via drinking water or feed for 24 h from 4, 5 to 6-weeks-old broilers. High-throughput 16S rRNA gene sequencing showed a high level of similarity (beta diversity) but revealed a significant change in alpha diversity between broilers with Salmonella-phage administered in the drinking water and control. Our results showed that the phages affected only a few genera of the microbiota’s structure, regardless of the administration route. Among these, we found a significant increase in Streptococcus and Sellimonas in the drinking water and Lactobacillus, Anaeroplasma and Clostridia_vadinBB60_group in the feed. Nevertheless, the LC-HRMS-based metabolomics analyses revealed that despite few genera were significantly affected, a substantial number of metabolites, especially in the phage administered in the drinking water were significantly altered (64 and 14 in the drinking water and feed groups, respectively). Overall, our study shows that preventive therapy with bacteriophages minimally alters the caecal microbiota but significantly impacts their metabolites, regardless of the route of administration.

  • Thumbnail Image
    Publication
    UCH
    Rapid Oxford Nanopore Technologies MinION sequencing workflow for "Campylobacter jejuni" identification in broilers on site : a proof-of-concept study2022-08-13

    Campylobacter is recognised as one of the most important foodborne bacteria, with a worldwide health and socioeconomic impact. This bacterium is one of the most important zoonotic players in poultry, where efficient and fast detection methods are required. Current official culture methods for Campylobacter enumeration in poultry usually include >44 h of culture and >72 h for identification, thus requiring at least five working shifts (ISO/TS 10272-2:2017). Here, we have assembled a portable sequencing kit composed of the Bento Lab and the MinION and developed a workflow for on-site farm use that is able to detect and report the presence of Campylobacter from caecal samples in less than five hours from sampling time, as well as the relationship of Campylobacter with other caecal microbes. Beyond that, our workflow may offer a cost-effective and practical method of microbiologically monitoring poultry at the farm. These results would demonstrate the possibility of carrying out rapid on-site screening to monitor the health status of the poultry farm/flock during the production chain.

  • Thumbnail Image
    Publication
    UCH
    Gastrointestinal dynamics of non-encapsulated and microencapsulated "Salmonella" bacteriophages in broiler production2022-01-08

    Bacteriophage therapy is being considered as a promising tool to control Salmonella in poultry. Nevertheless, changes in gastrointestinal tract environmental conditions throughout the production cycle could compromise the efficacy of phages administered orally. The main objectives of this study were to assess the optimal timing of the phage administration over a 42-day production cycle and to compare microencapsulated and non-encapsulated phages and the spatial and temporal dynamics of the phage delivery along the gastrointestinal tract. Phage FGS011 was encapsulated in the pH-responsive polymer Eudragit® L100 using the process of spray drying. At different weeks of the chicken rearing period, 15 broilers were divided into three groups. Over a period of 24 h, group 1 received non-encapsulated phages (delivered through drinking water), group 2 received microencapsulated phages (incorporated in animal feed), and group 3 did not receive any phages. Microencapsulation was shown to enable efficient delivery of the bacteriophages to the animal gut and cecum throughout the animal rearing period. During the six weeks of application, the crop displayed the highest phage concentration for both phage delivery methods. The L100 based encapsulation offered significant protection to the phages from the harsh environmental conditions in the PV-Gizzard (not seen with phages administered in drinking water) which may help in the delivery of high phage doses to the cecum. Future Salmonella challenge studies are necessary to demonstrate the benefits of microencapsulation of phages using L100 formulation on phage therapy in field studies during the rearing period.

  • Thumbnail Image
    Publication
    UCH
    Antibiotic removal does not affect cecal microbiota balance and productive parameters in LP robust rabbit line2022-11-07

    Mycobacteriosis is an important disease that affects captive and wild aquatic fish. Syngnathids are susceptible to infection by non-tuberculous mycobacteria. The aim of this study was to describe clinical signs, and macroscopic and histological lesions in 25 syngnathids and the molecular characterization of the causative mycobacteria. Clinical presentation ranged from sudden death to non-specific signs, including anorexia, poor body condition, weight loss and marked dyspnea with increased respiratory effort and rate. Gross lesions were mostly ulcers on the tail and small white nodules in the liver, coelomic cavity and inside the eye. The most affected organs were gills, liver, intestine and coelomic mesentery. Microscopic lesions consisted of areas of multifocal to diffuse granulomatous inflammation and bacterial emboli with numerous intralesional acid-fast bacilli. Epithelioid cells, multinucleated giant cells, lymphocytes and fibrous connective tissue, which are commonly observed in granulomatous inflammation, were not observed here. In the real-time PCR, M. fortuitum, M. chelonae and M. marinum common primers, Mycobacterium spp. were detected in 4, 7 and 14 individuals, respectively. In addition, this is the first description of mycobacteriosis found in Syngnathus acus.

  • Thumbnail Image
    Publication
    UCH
    Antimicrobial resistance in companion animals : a new challenge for the one health approach in the European Union2022-04-24

    Antimicrobial resistance (AMR) and the increase in multi-resistant bacteria are among the most important threats to public health worldwide, according to the World Health Organisation (WHO). Moreover, this issue is underpinned by the One Health perspective, due to the ability of AMR to be transmitted between animals and humans living in the same environment. Therefore, since 2014 different surveillance and control programmes have been established to control AMR in commensal and zoonotic bacteria in production animals. However, public health authorities’ reports on AMR leave out companion animals, due to the lack of national programmes and data collection by countries. This missing information constitutes a serious public health concern due to the close contact between companion animals, humans and their surrounding environment. This absence of control and harmonisation between programmes in European countries leads to the ineffectiveness of antibiotics against common diseases. Thus, there is a pressing need to establish adequate surveillance and monitoring programmes for AMR in companion animals and further develop alternatives to antibiotic use in this sector, considering the impact this could have on the gut microbiota. In this context, the aim of this review is to evaluate the current control and epidemiological situations of AMR in companion animals in the European Union (EU), as well as the proposed alternatives to antibiotics.

  • Thumbnail Image
    Publication
    UCH
    In vitro and in vivo gastrointestinal survival of non-encapsulated and microencapsulated "Salmonella" bacteriophages : implications for bacteriophage therapy in poultry2021-05-06

    The therapeutic use of bacteriophages is recognized as a viable method to control Salmonella. Microencapsulation of phages in oral dosage forms may protect phages from inherent challenges of the gastrointestinal tract in chickens. Therefore, the main objective of this study was to assess the survival of Salmonella BP FGS011 (non-encapsulated and microencapsulated) through the gastrointestinal tract under in vitro as well as in vivo conditions after oral administration to 1-day-old chicks. To this end, the phage FGS011 was encapsulated in two different pH-responsive formulations with polymers Eudragit® L100, and Eudragit® S100 using the process of spray drying. Phages encapsulated in either of the two formulations were able to survive exposure to the proventriculus-gizzard in vitro conditions whereas free phages did not. Moreover, phages formulated in polymer Eudragit® S100 would be better suited to deliver phage to the caeca in chickens. In the in vivo assay, no statistically significant differences were observed in the phage concentrations across the gastrointestinal tract for either the free phage or the encapsulated phage given to chicks. This suggested that the pH of the proventriculus/gizzard in young chicks is not sufficiently acidic to cause differential phage titre reductions, thereby allowing free phage survival in vivo.