1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Publication
    UCH
    Oxidative stress and fetal growth restriction set up earlier in undernourished sheep twin pregnancies prevention with antioxidant and nutritional supplementation2022-06-28

    Hypoxemia and oxidative stress, resulting in intrauterine growth restriction (IUGR) in undernourished twin sheep pregnancies, has been described in near-term studies. Our aim was to evaluate if the counteractive effects of maternal nutritional or antioxidant supplementation on the fetal redox status were evident before the accelerated fetal growth phase. Forty twin-bearing ewes grazing on natural Patagonian prairie were randomly assigned to four groups (n = 10 each; P: control ewes consuming mainly natural pasture; P+A: pasture plus antioxidants; P+C: pasture plus concentrate; P+A+C: pasture plus antioxidants and concentrate). Daily herbal antioxidants were supplemented in a feedstuff concentrate as a premix from day 35 until day 100 of gestation, when fetal venous cord blood samples and biometric measurements were obtained via cesarean section. The fetuses from group P were clearly hypoxemic. An analysis of variance showed that maternal antioxidant supplementation showed a trend of increased PO2, SatHb, and Ht, effects not observed in P+C fetuses. Antioxidants decreased the fetal MDA concentration (p < 0.05). Fetal TAC was increased by the antioxidants and concentrate (p < 0.05). Antioxidant supplementation showed a trend to increase fetal body weight but not biometry. The results suggest that negative effects of oxidative stress occur earlier than the overt growth arrest, and the maternal administration of antioxidants may constitute a good nutritional strategy for the early prevention of IUGR.

  • Thumbnail Image
    Publication
    UCH
    Maternal supplementation with polyphenols and Omega-3 fatty acids during pregnancy prenatal effects on fetal fatty acid composition in the Iberian pig2022-08-21

    Intrauterine Growth Restriction (IUGR) is a major problem in pig production and different strategies, mainly maternal supplementation with different agents, are currently being studied. The combination of hydroxytyrosol and n3-PUFA seems to be a promising treatment to counteract IUGR, since the combination may help improve n3-PUFA composition and lower the inflammatory status of IUGR piglets. The aim of the present study is to determine the effects of a maternal supplementation, from day 35 to day 100 of pregnancy, with linseed oil and hydroxytyrosol on the fetal FA composition. The results showed higher n3 levels, including eicosapentaenoic and docosahexaenoic FA in the offspring from treated gilts, which showed lower n6-PUFA/n3-PUFA (n6/n3) ratios. Saturated and monounsaturated fatty acids were also affected by treatment, especially in the muscle and brain. Thus, a maternal supplementation with linseed oil and hydroxytyrosol affected the fetal FA tissue composition, which could have implications in pig production due to the improvement of the piglets’ health status.

  • Thumbnail Image
    Publication
    UCH
    Polyphenols in farm animals : source of reproductive gain or waste?2020-10-21

    Reproduction is a complex process that is substantially a ected by environmental cues, specifically feed/diet and its components. Farm animals as herbivorous animals are exposed to a large amount of polyphenols present in their natural feeding system, in alternative feed resources (shrubs, trees, and agro-industrial byproducts), and in polyphenol-enriched additives. Such exposure has increased because of the well-known antioxidant properties of polyphenols. However, to date, the argumentation around the impacts of polyphenols on reproductive events is debatable. Accordingly, the intensive inclusion of polyphenols in the diets of breeding animals and in media for assisted reproductive techniques needs further investigation, avoiding any source of reproductive waste and achieving maximum benefits. This review illustrates recent findings connecting dietary polyphenols consumption from di erent sources (conventional and unconventional feeds) with the reproductive performance of farm animals, underpinned by the findings of in vitro studies in this field. This update will help in formulating proper diets, optimizing the introduction of new plant species, and feed additives for improving reproductive function, avoiding possible reproductive wastes and maximizing possible benefits.

  • Thumbnail Image
    Publication
    UCH
    Maternal metabolic demands caused by pregnancy and lactation : association with productivity and offspring phenotype in high-yielding dairy ewes2019-05-30

    Pregnancy and lactation, especially when concurrent, create a rather metabolically demanding situation in dairy ruminants, but little is known about their e ects on o spring phenotype and milk yield. Here, we evaluated the impact of pregnancy and lactation on the metabolic traits and productive performance of Lacaune dairy sheep and their o spring. Productive performance was measured in terms of milk yield, body weight (BW), body condition score (BCS), and size. Productivity was assessed during mid-pregnancy (75 5 d) and late pregnancy (142 4 d) and at 52 5 d in the postpartum period. During pregnancy, high-yielding ewes had higher BW, BCS, plasma glucose, cholesterol, -OHB, and NEFA than low-yielding ewes, but lower levels of lactate and urea. High-yielding animals had lower BCS after lambing, but their lambs showed greater growth. Productivity during lactation was a ected by ewe age and parity: Mature ewes (but not maiden sheep) whose BCS increased steeply during pregnancy yielded more milk in the subsequent lactation than those whose BCS did not increase. Lamb BW and size were positively associated with milk yield in the subsequent lactation. Mature ewes had higher yields than maiden sheep, and mature ewes with multiple pregnancies produced more milk than those with singleton pregnancies. Ewes with male singleton pregnancies also showed higher yield than those with female singletons. These results demonstrate that high-yielding dairy sheep, when appropriately fed and managed, can adequately cover the metabolic demands of pregnancy and high milk production (even when concurrent) without losing productivity.

  • Thumbnail Image
    Publication
    UCH
    Influence of maternal factors (weight, body condition, parity, and pregnancy rank) on plasma metabolites of dairy ewes and their lambs2019-03-28

    Pregnancy and lactation are challenging states that affect maternal and lamb health. In Lacaune dairy sheep, we evaluated the impact of parity, pregnancy rank, and body condition on body weight and the condition of ewes and lambs in mid-pregnancy (75 5 d), in late pregnancy (142 4d), and postpartum (52 5d pp). Maternal age was associated with initial decreases, followed by increases, in body weight and condition. After lambing, both mature and maiden ewes lost weight and body condition. Maternal indices of glucose, protein, and lipid metabolism were within physiological values during pregnancy, but postpartum values depended on maternal parity and pregnancy rank, with multiple-pregnant ewes showing a postpartum increase in glucose and maiden sheep a postpartum increase in plasma cholesterol concentration. Male lambs were heavier than female lambs at birth, and lambs born to mothers with higher body condition scores were heavier. Lambs born as singletons were heavier than those born in litters. Maternal age and pregnancy rank did not influence lamb metabolic indicators. Sex affected plasma concentrations of glucose, triglycerides, and cholesterol. Maternal metabolic indicators showed minimal effects on lamb phenotype. These results suggest that, when appropriately fed, dairy sheep can cover the metabolic demands of pregnancy and milk production, regardless of age and pregnancy rank.