1. Investigación
Permanent URI for this communityhttps://hdl.handle.net/10637/1
Search Results
- Finerenone protects against progression of kidney and cardiovascular damage in a model of type 1 diabetes through modulation of proinflammatory and osteogenic factors
2023-10-11 The non-steroidal mineralocorticoid receptor antagonist (MRA) finerenone (FIN) improves kidney and cardiovascular outcomes in patients with chronic kidney disease (CKD) in type 2 diabetes (T2D). We explored the effect of FIN in a novel model of type 1 diabetic Munich Wistar Fr¨omter (MWF) rat (D) induced by injection of streptozotocin (15 mg/kg) and additional exposure to a high-fat/high-sucrose diet. Oral treatment with FIN (10 mg/kg/day in rat chow) in diabetic animals (D-FIN) was compared to a group of D rats receiving no treatment and a group of non-diabetic untreated MWF rats (C) (n = 7–10 animals per group). After 6 weeks, D and D-FIN exhibited significantly elevated blood glucose levels (271.7 ± 67.1 mg/dl and 266.3 ± 46.8 mg/dl) as compared to C (110.3 ± 4.4 mg/dl; p < 0.05). D showed a 10-fold increase of kidney damage markers Kim-1 and Ngal which was significantly suppressed in D-FIN. Blood pressure, pulse wave velocity (PWV) and arterial collagen deposition were lower in D-FIN, associated to an improvement in endothelial function due to a reduction in procontractile prostaglandins, as well as reactive oxygen species (ROS) and inflammatory cytokines (IL-1, IL-6, TNFα and TGFβ) in perivascular and perirenal adipose tissue (PVAT and PRAT, respectively). In addition, FIN restored the imbalance observed in CKD between the procalcifying BMP-2 and the nephroprotective BMP-7 in plasma, kidney, PVAT, and PRAT. Our data show that treatment with FIN improves kidney and vascular damage in a new rat model of DKD with T1D associated with a reduction in inflammation, fibrosis and osteogenic factors independently from changes in glucose homeostasis.
- Anticontractile Effect of Perivascular Adipose Tissue and Leptin are Reduced in Hypertension
2012-06-05 Leptin causes vasodilatation both by endothelium-dependent and-independent mechanisms. Leptin is synthesized by perivascular adipose tissue (PVAT). The hypothesis of this study is that a decrease of leptin production in PVAT of spontaneously hypertensive rats (SHR) might contribute to adiminished paracrine anticontractile effect of the hormone. We have determined in aorta from Wistar-Kyoto (WKY) and SHR leptin mRNA and protein levels in PVAT, the effect of leptin and PVAT on contractile responses, and leptin-induced relaxation and nitricoxide (NO) production. Leptin mRNA and protein expression were significantly lower in PVAT from SHR. Concentration response curves to angiotensin II were significantly blunted in presence of PVAT as well as by exogenousleptin (10−9M) only in WKY. This anticontractile effect was endothelium-dependent. Vasodilatation induced by leptin was smaller in SHR than in WKY, and was also endothelium-dependent. More over, release of endothelial NO in response to acute leptin was higherin WKY compared to SHR, but completely abolished in the absence of endothelium. In conclusion, the reduced anticontractile effect of PVAT in SHR might be attributed to a reduced PVAT-derived leptin and to an abrogated effect of leptin on endothelial NO release probably due to an impaired activation of endothelial NO synthase
- Imbalance between Pro and Anti-Oxidant Mechanisms in Perivascular Adipose Tissue Aggravates Long-Term High-Fat Diet-Derived Endothelial Dysfunction
2014-04-23 Background: The hypothesis of this study is that long-term high-fat diets (HFD) induce perivascular adipose tissue (PVAT) dysfunction characterized by a redox imbalance, which might contribute to aggravate endothelial dysfunction in obesity. Methods and Results: C57BL/6J mice were fed either control or HFD (45% kcal from fat) for 32 weeks. Body weight, lumbar and mesenteric adipose tissue weights were significantly higher in HFD animals compared to controls. The anticontractile effect of PVAT in mesenteric arteries (MA) was lost after 32 week HFD and mesenteric endothelial-dependent relaxation was significantly impaired in presence of PVAT in HFD mice (Emax = 71.065.1 vs Emax = 58.564.2, p,0.001). The inhibitory effect of L-NAME on Ach-induced relaxation was less intense in the HFD group compared with controls suggesting a reduction of endothelial NO availability. Expression of eNOS and NO bioavailability were reduced in MA and almost undetectable in mesenteric PVAT of the HFD group. Superoxide levels and NOX activity were higher in PVAT of HFD mice. Apocynin only reduced contractile responses to NA in HFD animals. Expression of ec-SOD and total SOD activity were significantly reduced in PVAT of HFD mice. No changes were observed in Mn-SOD, Cu/Zn-SOD or catalase. The ratio [GSSG]/([GSH]+[GSSG]) was 2- fold higher in the mesenteric PVAT from HFD animals compared to controls. Conclusions: We suggest that the imbalance between pro-oxidant (NOX, superoxide anions, hydrogen peroxide) and antioxidant (eNOS, NO, ecSOD, GSSG) mechanisms in PVAT after long-term HFD might contribute to the aggravation of endothelial dysfunction.