1. Investigación
Permanent URI for this communityhttps://hdl.handle.net/10637/1
Search Results
- Maternal fructose intake aggravates the harmful effects of a Western diet in rat male descendants impacting their cholesterol metabolism
2024-05-14 Scope: fructose consumption from added sugars correlates with the epidemic rise in MetS and CVD. Maternal fructose intake has been described to program metabolic diseases in progeny. However, consumption of fructose-containing beverages is allowed during gestation. Cholesterol is also a well-known risk factor for CVD. Therefore, it is essential to study Western diets which combine fructose and cholesterol and how maternal fructose can influence the response of progeny to these diets. Methods and results: a high-cholesterol (2%) diet combined with liquid fructose (10%), as a model of an unhealthy Western diet, was administered to descendants from control and fructose-fed mothers. Gene (mRNA and protein) expression and plasma, fecal and tissue parameters of cholesterol metabolism were measured. Interestingly, progeny from fructose-fed dams consumed less liquid fructose and cholesterol-rich chow than males from control mothers. Moreover, descendants of fructose-fed mothers fed a Western diet showed an increased cholesterol elimination through bile and feces than males from control mothers. Despite these mitigating circumstances to develop a proatherogenic profile, the same degree of hypercholesterolemia and severity of steatosis were observed in all descendants fed a Western diet, independently of maternal intake. An increased intestinal absorption of cholesterol, synthesis, esterification, and assembly into lipoprotein found in males from fructose-fed dams consuming a Western diet could be the cause. Moreover, an augmented GLP2 signalling seen in these animals would explain this enhanced lipid absorption. Conclusions: maternal fructose intake, through a fetal programming, makes a Western diet considerably more harmful in their descendants than in the offspring from control mothers.
- Maternal fructose boosts the effects of a Western-type diet increasing SARS-COV-2 cell entry factors in male offspring
2023-01 Fructose-rich beverages and foods consumption correlates with the epidemic rise in cardiovascular disease, diabetes and obesity. Severity of COVID-19 has been related to these metabolic diseases. Fructose-rich foods could place people at an increased risk for severe COVID-19. We investigated whether maternal fructose intake in offspring affects hepatic and ileal gene expression of proteins that permit SARS-CoV2 entry to the cell. Carbohydrates were supplied to pregnant rats in drinking water. Adult and young male descendants subjected to water, liquid fructose alone or as a part of a Western diet, were studied. Maternal fructose reduced hepatic SARS-CoV2 entry factors expression in older offspring. On the contrary, maternal fructose boosted the Western diet-induced increase in viral entry factors expression in ileum of young descendants. Maternal fructose intake produced a fetal programming that increases hepatic viral protection and, in contrast, exacerbates fructose plus cholesterolinduced diminution in SARS-CoV2 protection in small intestine of progeny.
- Opposite metabolic response to fenofibrate treatment in pregnant and virgin rats.
2002-09-19T15:39:55Z The level of maternal circulating triglycerides during late pregnancy has been correlated to newborns’ weight in humans. To investigate the response to fenofibrate, a hypotriglyceridemic agent, in pregnant rats, 0, 100, or 200 mg of fenofibrate/kg body weight as oral doses were given twice a day from day 16 of gestation and studied at day 20. Virgin rats were studied in parallel. Liver weight was higher in pregnant than in virgin rats, and either dose of fenofibrate increased this variable in both groups. The highest dose of fenofibrate decreased fetal weight. Although plasma triglycerides decreased during the first 2 days of fenofibrate treatment in pregnant rats, the effect disappeared on day 3, and plasma triglycerides were even enhanced at day 4. In virgin rats, fenofibrate decreased plasma triglycerides throughout the experiment. Plasma cholesterol levels in pregnant rats decreased during the first 3 days of treatment, and the effect disappeared on day 4, whereas in virgin rats, values remained decreased. Changes in plasma triglycerides paralleled those of VLDL triglycerides. In pregnant rats, VLDL cholesterol levels increased while LDL cholesterol decreased with the treatment, whereas in virgin rats, cholesterol levels decreased in all lipoprotein fractions. Only in virgin rats did liver triglyceride concentration increase with fenofibrate treatment. Lumbar adipose tissue LPL was lower in pregnant than in virgin rats, and fenofibrate treatment decreased this variable in both groups. Maternal fenofibrate treatment increased fetal plasma and liver triglyceride and cholesterol concentrations.
- Comparative study on the in vivo and in vitro antilipolytic effects of etofibrate, nicotinic acid and clofibrate in the rat.
1996-09-19T15:39:52Z The release of both glycerol and free fatty acids (FFA) into a medium by epididymal fat pad pieces from fed rats incubated in Krebs Ringer bicarbonate-albumin buffer supplemented or not with epinephrine decreased more in the presence of etofibrate than in the presence of equimolecular doses of nicotinic acid or clofibrate. The first drug was the only one to stimulate the rate of fatty acid re-esterification when incubations were done under basal conditions. By 3 h after their acute oral administration all three drugs decreased plasma FF A levels, although the effect from etofibrate was largest, the drugs enhanced or decreased plasma glycerol levels depending on both the dose and the time after treatment. Plasma triglycerides also decreased at 3 h after oral drug administration, and this effect was similar with etofibrate and nicotinic acid but less with clofibrate. With the exception of a decrease at 7 h after the highest dose (1.2 mmoljkg) of either etofibrate or nicotinic acid (but not clofibrate), plasma cholesterol levels remained stable at 7 h after the respective treatments. Thus, the hypocholesterolemic effect of these drugs seems secondary to their hypotriglyceridemic effect, which would be a consequence of their respective antilipolytic actions, and follows an efficiency sequence of etofibrate, nicotinic acid and clofibrate.