1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Publication
    UCH
    Genetic ablation of the Rho GTPase Rnd3 triggers developmental defects in internal capsule and the globus pallidus formation2021-07

    The forebrain includes the cerebral cortex, the thalamus, and the striatum and globus pallidus (GP) in the subpallium. The formation of these structures and their interconnections by specific axonal tracts take place in a precise and orchestrated time and spatial-dependent manner during development. However, the knowledge of the molecular and cellular mechanisms that are involved is rather limited. Moreover, while many extracellular cues and specific receptors have been shown to play a role in different aspects of nervous system development, including neuron migration and axon guidance, examples of intracellular signaling effectors involved in these processes are sparse. In the present work, we have shown that the atypical RhoGTPase, Rnd3, is expressed very early during brain development and keeps a dynamic expression in several brain regions including the cortex, the thalamus, and the subpallium. By using a gene-trap allele (Rnd3gt) and immunological techniques, we have shown that Rnd3gt/gt embryos display severe defects in striatal and thalamocortical axonal projections (SAs and TCAs, respectively) and defects in GP formation already at early stages. Surprisingly, the corridor, an important intermediate target for TCAs is still present in these mutants. Mechanistically, a conditional genetic deletion approach revealed that Rnd3 is primarily required for the normal development of Medial Ganglionic Eminence-derived structures, such as the GP, and therefore acts non-cell autonomously in SAs and TCAs. In conclusion, we have demonstrated the important role of Rnd3 as an early regulator of subpallium development in vivo and revealed new insights about SAs and TCAs development.

  • Thumbnail Image
    Publication
    UCH
    Neural stem cells direct axon guidance via their radial fiber scaffold2020-09-23

    Neural stem cells directly or indirectly generate all neurons and macroglial cells and guide migrating neurons by using a palisade-like scaffold made of their radial fibers. Here, we describe an unexpected role for the radial fiber scaffold in directing corticospinal and other axons at the junction between the striatum and globus pallidus. The maintenance of this scaffold, and consequently axon pathfinding, is dependent on the expression of an atypical RHO-GTPase, RND3/RHOE, together with its binding partner ARHGAP35/P190A, a RHO GTPase-activating protein, in the radial glia-like neural stem cells within the ventricular zone of the medial ganglionic eminence. This role is independent of RND3 and ARHGAP35 expression in corticospinal neurons, where they regulate dendritic spine formation, axon elongation, and pontine midline crossing in a FEZF2-dependent manner. The prevalence of neural stem cell scaffolds and their expression of RND3 and ARHGAP35 suggests that these observations might be broadly relevant for axon guidance and neural circuit formation.

  • Thumbnail Image
    Publication
    UCH
    TranspaVET: innovating in Veterinary learning using augmented and virtual reality2024-03

    The ability to communicate scientific information effectively is crucial for veterinary professionals. Consequently, veterinary students require consistent and proactive training in communication. In parallel, digital transformation has undoubtedly impacted educational institutions. To address these priorities, the TranspaVET project aimed to design an immersive educational experience through advanced and innovative technology. This article aims to share our experience involving first-year veterinary students in producing scientific posters and how augmented reality (AR) and virtual reality (VR) impact their scientific outreach. The project, developed in the academic year 2022-23, involved 35 students and eight mentor professors and resulted in nine scientific posters. The posters were digitized allowing their access through links or Quick Response (QR) codes. Firstly, they could be visualised in 3D Web preview and in AR, as images overlayed into reality through mobile devices. Secondly, they could be viewed in an immersive VR educational metaverse. Visitors could access the metaverse via their personal electronic devices and via VR headsets. Users can view, download, and share the posters and talk together inside the virtual environment. By January 7th, 2024, the posters were digitally viewed 1,795 times, and 207 unique users entered the TranspaVET metaverse from different Spanish regions (Valencian Community, Castile and Leon, Andalusia, Madrid, Catalonia, Asturias, and Galicia), as well as from Argentina and Costa Rica. The TranspaVET project represents a creative connection between educational innovation and scientific research dissemination. It sets an example for the future of immersive, technology-driven learning through a platform that combines AR and VR.

  • Thumbnail Image
    Publication
    UCH
    A CRISPR interference strategy for gene expression silencing in multiple myeloma cell lines2023-05-04

    Background: Multiple myeloma (MM) is the second most common hematologic neoplasm which is characterized by proliferation and infiltration of plasmatic cells in the bone marrow. Currently, MM is considered incurable due to resistance to treatment. The CRISPR/Cas9 system has emerged as a powerful tool for understanding the role of different genetic alterations in the pathogenesis of hematologic malignancies in both cell lines and mouse models. Despite current advances of gene editing tools, the use of CRISPR/Cas9 technology for gene editing of MM have not so far been extended. In this work, we want to repress Rnd3 expression, an atypical Rho GTPase involved in several cellular processes, in MM cell lines using a CRISPR interference strategy. Results: We have designed different guide RNAs and cloning them into a lentiviral plasmid, which contains all the machinery necessary for developing the CRISPR interference strategy. We co-transfected the HEK 293T cells with this lentiviral plasmid and 3rd generation lentiviral envelope and packaging plasmids to produce lentiviral particles. The lentiviral particles were used to transduce two different multiple myeloma cell lines, RPMI 8226 and JJN3, and downregulate Rnd3 expression. Additionally, the impact of Rnd3 expression absence was analyzed by a transcriptomic analysis consisting of 3' UTR RNA sequencing. The Rnd3 knock-down cells showed a different transcriptomic profile in comparison to control cells. Conclusions: We have developed a CRISPR interference strategy to generate stable Rnd3 knockdown MM cell lines by lentiviral transduction. We have evaluated this strategy in two MM cell lines, and we have demonstrated that Rnd3 silencing works both at transcriptional and protein level. Therefore, we propose CRISPR interference strategy as an alternative tool to silence gene expression in MM cell lines. Furthermore, Rnd3 silencing produces changes in the cellular transcriptomic profile.

  • Thumbnail Image
    Publication
    UCH
    RND3 potentiates proinflammatory activation through NOTCH signaling in activated macrophages2024-02-02

    Macrophage activation is a complex process with multiple control elements that ensures an adequate response to the aggressor pathogens and, on the other hand, avoids an excess of inflammatory activity that could cause tissue damage. In this study, we have identified RND3, a small GTP-binding protein, as a new element in the complex signaling process that leads to macrophage activation. We show that RND3 expression is transiently induced in macrophages activated through Toll receptors and potentiated by IFN-γ. We also demonstrate that RND3 increases NOTCH signaling in macrophages by favoring NOTCH1 expression and its nuclear activity; however, Rnd3 expression seems to be inhibited by NOTCH signaling, setting up a negative regulatory feedback loop. Moreover, increased RND3 protein levels seem to potentiate NFκB and STAT1 transcriptional activity resulting in increased expression of proinflammatory genes, such as Tnf-α, Irf-1, or Cxcl-10. Altogether, our results indicate that RND3 seems to be a new regulatory element which could control the activation of macrophages, able to fine tune the inflammatory response through NOTCH.

  • Thumbnail Image
    Publication
    UCH
    Rnd3 expression is necessary to maintain mitochondrial homeostasis but dispensable for autophagy2022-06-27

    Autophagy is a highly conserved process that mediates the targeting and degradation of intracellular components to lysosomes, contributing to the maintenance of cellular homeostasis and to obtaining energy, which ensures viability under stress conditions. Therefore, autophagy defects are common to different neurodegenerative disorders. Rnd3 belongs to the family of Rho GTPases, involved in the regulation of actin cytoskeleton dynamics and important in the modulation of cellular processes such as migration and proliferation. Murine models have shown that Rnd3 is relevant for the correct development and function of the Central Nervous System and lack of its expression produces several motor alterations and neural development impairment. However, little is known about the molecular events through which Rnd3 produces these phenotypes. Interestingly we have observed that Rnd3 deficiency correlates with the appearance of autophagy impairment profiles and irregular mitochondria. In this work, we have explored the impact of Rnd3 loss of expression in mitochondrial function and autophagy, using a Rnd3 KO CRISPR cell model. Rnd3 deficient cells show no alterations in autophagy and mitochondria turnover is not impaired. However, Rnd3 KO cells have an altered mitochondria oxidative metabolism, resembling the effect caused by oxidative stress. In fact, lack of Rnd3 expression makes these cells strictly dependent on glycolysis to obtain energy. Altogether, our results demonstrate that Rnd3 is relevant to maintain mitochondria function, suggesting a possible relationship with neurodegenerative diseases.

  • Thumbnail Image
    Publication
    UCH
    Rnd3 is necessary for the correct oligodendrocyte differentiation and myelination in the central nervous system2022-04-01

    Rho small GTPases are proteins with key roles in the development of the central nervous system. Rnd proteins are a subfamily of Rho GTPases characterized by their constitutive activity. Rnd3/RhoE is a member of this subfamily ubiquitously expressed in the CNS, whose specific functions during brain development are still not well defined. Since other Rho proteins have been linked to the myelination process, we study here the expression and function of Rnd3 in oligodendrocyte development. We have found that Rnd3 is expressed in a subset of oligodendrocyte precursor cells and of mature oligodendrocytes both in vivo and in vitro. We have analyzed the role of Rnd3 in myelination using mice lacking Rnd3 expression (Rnd3gt/gt mice), showing that these mice exhibit hypomyelination in the brain and a reduction in the number of mature and total oligodendrocytes in the corpus callosum and striatum. The mutants display a decreased expression of several myelin proteins and a reduction in the number of myelinated axons. In addition, myelinated axons exhibit thinner myelin sheaths. In vitro experiments using Rnd3gt/gt mutant mice showed that the differentiation of the precursor cells is altered in the absence of Rnd3 expression, suggesting that Rnd3 is directly required for the differentiation of oligodendrocytes and, in consequence, for the correct myelination of the CNS. This work shows Rnd3 as a new protein involved in oligodendrocyte maturation, opening new avenues to further study the function of Rnd3 in the development of the central nervous system and its possible involvement in demyelinating diseases.