1. Investigación
Permanent URI for this communityhttps://hdl.handle.net/10637/1
Search Results
- High myopia and the complement system : factor H in myopic maculopathy
2021-06-12 High myopia (HM) is both a medical problem and refractive error of the eye owing to excessive eyeball length, which progressively makes eye tissue atrophic, and is one of the main causes for diminishing visual acuity in developed countries. Despite its high prevalence and many genetic and proteomic studies, no molecular pattern exists that explain the degenerative process underlying HM, which predisposes patients to other diseases like glaucoma, cataracts, retinal detachment and chorioretinal atrophy that affect the macular area. To determine the relation between complement Factors H (CFH) and D (CFD) and the maculopathy of patients with degenerative myopia, we studied aqueous humor samples that were collected by aspiration from 122 patients during cataract surgery. Eyes were classified according to eyeball axial length as high myopia (axial length > 26 mm), low myopia (axial length 23.5–25.9 mm) and control (axial length < 23.4 mm). The degree of maculopathy was classified according to fundus oculi findings following IMI’s classification. Subfoveal choroid thickness was measured by optical coherence tomography. CFH and CFD measurements were taken by ELISA. CFH levels were significantly high in the high myopia group vs. the low myopia and control groups (p < 0.05). Significantly high CFH values were found in those eyes with choroid atrophy and neovascularization (p < 0.05). In parallel, the CFH concentration correlated inversely with choroid thickness (R = 0.624). CFD levels did not correlate with maculopathy. All the obtained data seem to suggest that CFH plays a key role in myopic pathology.
- The influence of storage method on the transparency of pig crystalline lens
2019-01-14 Purpose: The porcine eye is frequently used as a research model. This paper analyzes the effect of different storage methods on the transparency of pig crystalline lens. Methods: A spectral transmission curve (from 220 to 780 nm) for the crystalline lens was determined experimentally after storage in different conditions: saline solution, formalin, castor oil, and freezing at -80°C. The total transmission in the visible spectrum, which was used as an index of transparency, was calculated from these curves. For comparative purposes, fresh lenses were evaluated and used as controls. Results: Storing the porcine crystalline lens in saline solution or castor oil resulted in a transparency loss of approximately 10% after 24 h and storage in formalin resulted in a loss of nearly 30%. Storage by freezing at -80°C for 4 weeks maintained the transparency of the crystalline lens; the spectral transmission measured immediately after defrosting at room temperature coincided exactly with that of the freshly extracted lens. Conclusions: The transparency of porcine crystalline lens is affected by the storage method. The visible spectrum is the most affected, evidenced by the effect on the transparency and consequently the amount of light transmitted. The results show that freezing at -80°C maintains the transparency of the crystalline lens for at least 4 weeks.