1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    USP
    Mechanisms of Impaired Brown Adipose Tissue Recruitment in Obesity2019-02-13

    Brown adipose tissue (BAT) dissipates energy to produce heat. Thus, it has the potential to regulate body temperature by thermogenesis. For the last decade, BAT has been in the spotlight due to its rediscovery in adult humans. This is evidenced by over a hundred clinical trials that are currently registered to target BAT as a therapeutic tool in the treatment of metabolic diseases, such as obesity or diabetes. The goal of most of these trials is to activate the BAT thermogenic program via several approaches such as adrenergic stimulation, natriuretic peptides, retinoids, capsinoids, thyroid hormones, or glucocorticoids. However, the impact of BAT activation on total body energy consumption and the potential effect on weight loss is still limited. Other studies have focused on increasing the mass of thermogenic BAT. This can be relevant in obesity, where the activity and abundance of BAT have been shown to be drastically reduced. The aim of this review is to describe pathological processes associated with obesity that may influence the correct differentiation of BAT, such as catecholamine resistance, inflammation, oxidative stress, and endoplasmic reticulum stress. This will shed light on the thermogenic potential of BAT as a therapeutic approach to target obesity-induced metabolic diseases.

  • Thumbnail Image
    Publication
    USP
    Unravelling the Inflammatory Processes in the Early Stages of Diabetic Nephropathy and the Potential Effect of (Ss)-DS-ONJ2022-07-30

    Inflammatory processes play a central role in the pathogenesis of diabetic nephropathy (DN) in the early stages of the disease. The authors demonstrate that the glycolipid mimetic (Ss)-DS-ONJ is able to abolish inflammation via the induction of autophagy flux and provokes the inhibition of inflammasome complex in ex vivo and in vitro models, using adult kidney explants from BB rats. The contribution of (Ss)-DS-ONJ to reducing inflammatory events is mediated by the inhibition of classical stress kinase pathways and the blocking of inflammasome complex activation. The (Ss)-DS-ONJ treatment is able to inhibit the epithelial-to-mesenchymal transition (EMT) progression, but only when the IL18 levels are reduced by the treatment. These findings suggest that (Ss)-DS-ONJ could be a novel, and multifactorial treatment for DN.

  • Thumbnail Image
    Publication
    USP
    Adult kidney explants is a physiologic model for studying diabetic nephropathy2022-04-25

    Inflammatory processes play a central role in the pathogenesis of diabetic nephropathy (DN) in the early stages of the disease. In vitro approach using cell lines help to understand the mechanisms involves and allow the molecular and biochemical processes. Adult kidney (AK) explants remain an essential instrument for advancing our understanding of the molecular and cellular regulation of signalling pathways from an organotipic view with physiological system interaction integrated. AK explants from T1DM animal model (BB rat) are obtained by slicing central kidney area preserving the organ's cytoarchitecture and reproduce the classical events detected during the DN in an in vivo model such as inflammation, epithelial-mesenchymal transition (EMT) processes by the modulation of a-SMA and e-Cadherin among others which have been determined by qRT-PCR, western-blot and immunohistochemistry. In this regard, AK explants reproduce the signalling pathways involve in DN progression (proinflammatory NFkB and inflammasome complex). This work demonstrates AK explants is a physiological experimental approach for studying the development and progression of DN. Furthermore, the inflammatory processes in AK explants under a diabetic environment and/or BB rats could be modulated by potential treatments for DN.

  • Thumbnail Image
    Publication
    USP
    Sex-Specific Relationships of Physical Activity and Sedentary Behaviour with Oxidative Stress and Inflammatory Markers in Young Adults2023-01-04

    This study aims to analyse sex-specific associations of physical activity and sedentary behaviour with oxidative stress and inflammatory markers in a young-adult population. Sixty participants (21 women, 22.63 4.62 years old) wore a hip accelerometer for 7 consecutive days to estimate their physical activity and sedentarism. Oxidative stress (catalase, superoxide dismutase, glutathione peroxidase, glutathione, malondialdehyde, and advanced oxidation protein products) and inflammatory (tumour necrosis factor-alpha and interleukin-6) markers were measured. Student t-tests and single linear regressions were applied. The women presented higher catalase activity and glutathione concentrations, and lower levels of advanced protein-oxidation products, tumour necrosis factor-alpha, and interleukin-6 than the men (p < 0.05). In the men, longer sedentary time was associated with lower catalase activity (b = 􀀀0.315, p = 0.04), and longer sedentary breaks and higher physical-activity expenditures were associated with malondialdehyde (b = 􀀀0.308, p = 0.04). Vigorous physical activity was related to inflammatory markers in the women (tumour necrosis factor-alpha, b = 0.437, p = 0.02) and men (interleukin􀀀6, b = 0.528, p < 0.01). In conclusion, the women presented a better redox and inflammatory status than the men; however, oxidative-stress markers were associated with physical activity and sedentary behaviours only in the men. In light of this, women could have better protection against the deleterious effect of sedentarism but a worse adaptation to daily physical activity.