1. Investigación
Permanent URI for this communityhttps://hdl.handle.net/10637/1
Search Results
- Fasciolosis hepática en ganado equino: a propósito de un caso
2023-09 En este artículo se describe el hallazgo de huevos de "Fasciola hepatica" en una muestra de heces de ganado mular, como consecuencia del programa de desparasitación anual que tiene establecido las distintas ADSs. La importancia de este hallazgo radica en el escaso número de équidos que se presentan como hospedadores definitivos de este parásito, pudiendo dar lugar a enfermedad hepática difícil de diagnosticar.
- Topological model for the search of new antibacterial drugs: 158 theoretical candidates
2015 In this paper, molecular topology was used to develop a mathematical model capable of classifying compounds according to their antibacterial activity. Topological indices were used as structural descriptors and their relation to antibacterial activity was determined by applying linear discriminant analysis (LDA) on a group of quinolones, widely used nowadays because of their broad spectrum of activity, well tolerance profile and advantageous pharmacokinetic properties. The topological model of activity obtained included two discriminant functions, selected by a combination of various statistical paremeters such as Fisher-Snedecor F and Wilk's lambda, and allows the reliable prediction of antibacterial activity in any organic compound. After a virtual pharmacological screening on a library of 6375 compounds, the model has selected 263 as active compounds, from which 40% have proven antibacterial activity. The results obtained clearly reveal the high efficiency of molecular topology for the prediction of pharmacological activities. These models are very helpful in the discovery of new applications of natural and synthetic molecules with different chemical or biological properties. Therefore, we finally present 158 strong candidates to be developed as novel antibacterials.
- The kinetoplastid chemotherapy revisited: current drugs, recent advances and future perspectives
2010 Leishmaniasis, African sleeping sickness and Chagas disease, caused by the kinetoplastid parasites Leishmania spp, Trypanosoma brucei and Trypanosoma cruzi, respectively, are among the most important parasitic diseases, affecting millions of people and considered to be within the most relevant group of neglected tropical diseases. The main alternative to control such parasitosis is chemotherapy. Nevertheless, the current chemotherapeutic treatments are far from being satisfactory. This review outlines the current understanding of different drugs against leishmaniasis, African sleeping sickness and Chagas disease, their mechanism of action and resistance. Recent approaches in the area of anti-leishmanial and trypanocidal therapies are also enumerated, new modulators from the mode of action, development of new formulations of old drugs, therapeutic switching and “in silico” drug design.
- In vivo and in vitro anti-leishmanial activities of 4-nitro-N-pyrimidin- and N-pyrazin-2-ylbenzenesulfonamides, and N2-(4-nitrophenyl)-N1-propylglycinamide
2009-11 A series of compounds containing the nitrobenzene and sulfonamido moieties were synthesized and their leishmanicidal effect was assessed in vitro against Leishmania infantum promastigotes. Among the compounds evaluated, the p-nitrobenzenesulfonamides 4Aa and 4Ba, and the p-nitroaniline 5 showed significant activity with a good selectivity index. In a Balb/c mice model of L. Infantum, administration of compounds 4Aa, 4Ba or 5 (5 mg/kg/day for 10 days, injected ip route) led to a clear-cut parasite burden reduction (ca. 99%). In an attempt to elucidate their mechanism of action, the DNA interaction of 4Aa and 5 was investigated by means of viscosity studies, thermal denaturation and nuclease activity assay. Both compounds showed nuclease activity in the presence of copper salt. The results suggest that compounds 4Aa, 4Ba and 5 represent possible candidates for drug development in the therapeutic control of leishmaniasis.
- Fecundity, in vitro early larval development and karyotype of the zoonotic nematode "Anisakis pegreffii"
2023-11-12 The in vitro life cycle of zoonotic helminths is an essential tool for -omic translational studies focused on disease control and treatment. Anisakiosis is an emerging zoonosis contracted by the ingestion of raw or undercooked fish infected with the third stage larvae (L3) of two sibling species Anisakis simplex sensu stricto (s.s.) and Anisakis pegreffii, the latter being the predominant species in the Mediterranean basin. Recently, in vitro culture of A. pegreffii has been developed to enable fast and large-scale production of fertile adults. However, the conditions for larval development from hatching to infective L3 were not fulfilled to complete the cycle. Herein, we used a Drosophila medium supplemented with chicken serum and adjusted different osmolarities to maintain the culture of L3 hatched from eggs for up to 17 weeks. The highest survival rate was observed in the medium with the highest osmolarities, which also allowed the highest larval exsheathment rate. Key morphological features of embryogenesis and postembryogenesis studied by transmission electron microscopy revealed that the excretory gland cell is differentiated already up to 48 h post-hatching. Extracellular vesicles and cell-free mitochondria are discharged between the two cuticle sheets of the second stage larvae (L2). Contemporarly cultivated, two populations of adult A. simplex s.s. and A. pegreffii reached an average production of 29,914.05 (± 27,629.36) and 24,370.96 (± 12,564.86) eggs/day/female, respectively. The chromosome spreads of A. pegreffii obtained from mature gonads suggests a diploid karyotype formula of 2n = 18. The development of a reliable protocol for the in vitro culture of a polyxenous nematode such as Anisakis spp. will serve to screen for much needed novel drug targets, but also to study the intricated and unknown ecological and physiological traits of these trophically transmitted marine nematodes.
- Human and environmental factors driving "Toxoplasma gondii" prevalence in wild boar ("Sus scrofa")
2021-12 As one of the most relevant foodborne diseases, it is essential to know the factors related to the transmission, persistence and prevalence of Toxoplasma gondii infection. Eurasian wild boar (Sus scrofa) might play a relevant role in T.gondii's life cycle. This species is the most consumed big game animal in Spain and may act as a source of infection if the meat is eaten raw or undercooked or due to cross-contaminations. Additionally, wild boar can act as an excellent bioindicator of T.gondii circulation in the ecosystem, because its natural behaviour leads to exposure to oocysts from the soil when rooting and tissular bradyzoites when scavenging. A total of 1003 wild boar were sampled from 2010 to 2017 in Mediterranean Spain. Blood samples were tested with an indirect ELISA test giving a total of 14.1% (95% confidence interval 12.0–16.4%) positive results. The prevalence was not homogeneous in neither the animals nor the sampled districts. Significant differences were found regarding age, climatic conditions and human space occupancy. Human population aggregation, assessed by Demangeon's index, was identified as an influential factor in T.gondii infection risk. This multiple approach allows us to evaluate local risks for human and environmental contamination.