1. Investigación
Permanent URI for this communityhttps://hdl.handle.net/10637/1
Search Results
- Phage-based biosanitation strategies for minimizing persistent "Salmonella" and "Campylobacter" bacteria in poultry
2023-12-12 Control strategies to minimize pathogenic bacteria in food animal production are one of the key components in ensuring safer food for consumers. The most significant challenges confronting the food industry, particularly in the major poultry and swine sectors, are antibiotic resistance and resistance to cleaning and disinfection in zoonotic bacteria. In this context, bacteriophages have emerged as a promising tool for zoonotic bacteria control in the food industry, from animals and farm facilities to the final product. Phages are viruses that infect bacteria, with several advantages as a biocontrol agent such as high specificity, self-replication, self-limitation, continuous adaptation, low inherent toxicity and easy isolation. Their development as a biocontrol agent is of particular interest, as it would allow the application of a promising and even necessary “green” technology to combat pathogenic bacteria in the environment. However, bacteriophage applications have limitations, including selecting appropriate phages, legal restrictions, purification, dosage determination and bacterial resistance. Overcoming these limitations is crucial to enhance phage therapy’s effectiveness against zoonotic bacteria in poultry. Thus, this review aims to provide a comprehensive view of the phage-biosanitation strategies for minimizing persistent Salmonella and Campylobacter bacteria in poultry.
- Characterization of a unique repression system present in arbitrium phages of the SPbeta family
2023-12-13 Arbitrium-coding phages use peptides to communicate and coordinate the decision between lysis and lysogeny. However, the mechanism by which these phages establish lysogeny remains unknown. Here, focusing on the SPbeta phage family’s model phages phi3T and SPβ, we report that a six-gene operon called the “SPbeta phages repressor operon” (sro) expresses not one but two master repressors, SroE and SroF, the latter of which folds like a classical phage integrase. To promote lysogeny, these repressors bind to multiple sites in the phage genome. SroD serves as an auxiliary repressor that, with SroEF, forms the repression module necessary for lysogeny establishment and maintenance. Additionally, the proteins SroABC within the operon are proposed to constitute the transducer module, connecting the arbitrium communication system to the activity of the repression module. Overall, this research sheds light on the intricate and specialized repression system employed by arbitrium SPβ-like phages in making lysis-lysogeny decisions.