1. Investigación
Permanent URI for this communityhttps://hdl.handle.net/10637/1
Search Results
- Characterization of platelet rich plasma in feline immunodeficiency virus-infected cats: cell, and PDGF-BB and TGF-ß1 growth factor analysis
2024-03 Autologous platelet-rich plasma (PRP) contains growth factors (GFs) that modulate the expression of inflammatory cells; thus, these products could be considered a good strategy to favor tissue regeneration in feline immunodeficiency (FIV) positive cats. However, there is no scientific documentation on obtaining PRP in FIV-positive cats. Authors hypothesized that PRP can be obtained in FIV cats following the PRGF®-Endoret® methodology. The objectives of this study were to compare the platelet, erythrocyte, and leukocyte concentration between whole blood (WB) and the PRP; and determine the concentration of platelet-derived growth factor BB (PDGF-BB) and transforming growth factor β1 (TGF-β1) in FIV-positive cats. Sixteen adults FIV-positive asymptomatic cats were included in the study. WB samples were drawn and the PRP was obtained by centrifugation at 265g for 10 min. Erythrocyte and leukocyte, platelets, and mean platelet volume (MPV) were determined both in WB and in PRP. PDGF-BB and TGF-β1 concentrations were additionally determined in PRP. Platelet concentration increased 1.1 times in PRP fraction compared to WB, but no significant differences were reported. MPV was statistically higher in WB than in PRP (p = 0.001). Erythrocytes and leukocytes counts were decreased by 99% and 92%, respectively in the PRP fraction (p < 0.001). Regarding TGF-ß1, a higher concentration was shown in the PRP (p < 0.02). Although the product obtained could not be classified as PRP according to the PRGF®-Endoret® methodology, based on the drastic reduction of RBC and WBC, the PLT concentrate is of high purity.
- Multilineage-differentiating stress-enduring cells (Muse Cells): the future of human and veterinary regenerative medicine
2023-02-20 In recent years, several studies have been conducted on Muse cells mainly due to their pluripotency, high tolerance to stress, self-renewal capacity, ability to repair DNA damage and not being tumoral. Additionally, since these stem cells can be isolated from different tissues in the adult organism, obtaining them is not considered an ethical problem, providing an advantage over embryonic stem cells. Regarding their therapeutic potential, few studies have reported clinical applications in the treatment of different diseases, such as aortic aneurysm and chondral injuries in the mouse or acute myocardial infarction in the swine, rabbit, sheep and in humans. This review aims to describe the characterization of Muse cells, show their biological characteristics, explain the differences between Muse cells and mesenchymal stem cells, and present their contribution to the treatment of some diseases.
- The autologous chondral platelet-rich plasma matrix implantation: a new therapy in cartilage repair and regeneration: macroscopic and biomechanical study in an experimental sheep model
2023-12-11 Introduction: Articular cartilage injuries are a severe problem, and the treatments for these injuries are complex. The present study investigates a treatment for full-thickness cartilage defects called Autologous Chondral Platelet Rich Plasma Matrix Implantation (PACI) in a sheep model. Methods: Chondral defects 8 mm in diameter were surgically induced in the medial femoral condyles of both stifles in eight healthy sheep. Right stifles were treated with PACI and an intraarticular injection with a plasma rich in growth factors (PRGF) solution [treatment group (TRT)], while an intraarticular injection of Ringer’s lactate solution was administered in left stifles [Control group (CT)]. The limbs’ function was objectively assessed with a force platform to obtain the symmetry index, comparing both groups. After 9 and 18 months, the lesions were macroscopically evaluated using the International Cartilage Repair Society and Goebel scales. Results: Regarding the symmetry index, the TRT group obtained results similar to those of healthy limbs at 9 and 18 months after treatment. Regarding the macroscopic assessment, the values obtained by the TRT group were very close to those of normal cartilage and superior to those obtained by the CT group at 9 months. Conclusion: This new bioregenerative treatment modality can regenerate hyaline articular cartilage. High functional outcomes have been reported, together with a good quality repair tissue in sheep. Therefore, PACI treatment might be a good therapeutic option for full-thickness chondral lesions.
- Intra-osseous plasma rich in growth factors enhances cartilage and subchondral bone regeneration in rabbits with acute full thickness chondral defects: histological assessment
2023-03-29 Background: Intra-articular (IA) combined with intra-osseous (IO) infiltration of plasma rich in growth factors (PRGF) have been proposed as an alternative approach to treat patients with severe osteoarthritis (OA) and subchondral bone damage. The aim of the study is to evaluate the efficacy of IO injections of PRGF to treat acute full depth chondral lesion in a rabbit model by using two histological validated scales (OARSI and ICRS II). Methodology: A total of 40 rabbits were included in the study. A full depth chondral defect was created in the medial femoral condyle and then animals were divided into 2 groups depending on the IO treatment injected on surgery day: control group (IA injection of PRGF and IO injection of saline) and treatment group (IA combined with IO injection of PRGF). Animals were euthanized 56 and 84 days after surgery and the condyles were processed for posterior histological evaluation. Results: Better scores were obtained in treatment group in both scoring systems at 56- and 84-days follow-up than in control group. Additionally, longer-term histological benefits have been obtained in the treatment group. Conclusions: The results suggests that IO infiltration of PRGF enhances cartilage and subchondral bone healing more than the IA-only PRGF infiltration and provides longer-lasting beneficial effects.
- Intra-osseous infiltration of adipose mesenchymal stromal cells and plasma rich in growth factors to treat acute full depth cartilage defects in a rabbit model serum osteoarthritis biomarkers and macroscopical assessment
2022-12-20 Introduction: Intra-articular infiltration of plasma rich in growth factors (PRGF) and adipose mesenchymal stromal cells (AMSCs) are known to inhibit osteoarthritis progression. However, in severely aected patients, the treatment cannot reach the deeper layers of the articular cartilage; thus, its potential is limited. To overcome this limitation, intra-osseous infiltrations have been suggested. The purpose of this study is to assess the impact of intra- osseous infiltration therapies on serum biomarkers of osteoarthritis and to assess cartilage regeneration macroscopically. Materials and methods: A total of 80 rabbits were divided into four groups based on the intra-osseous treatment administered on the day of surgery: control, PRGF, AMSCs and a combination of PRGF + AMSCs. In addition, all groups received a single intra-articular administration of PRGF on the same day. Serum biomarker levels were measured before infiltration and 28-, 56-, and 84-days post infiltration, and macroscopical assessment was conducted at 56- and 84-days follow-up post infiltration. Results: In the PRGF + AMSCs group, significantly lower concentrations of hyaluronic acid and type II collagen cleavage neoepitope were recorded at all time points during the study, followed by PRGF, AMSCs and control groups. Regarding macroscopical assessment, lower scores were obtained in PRGF + AMSCs group at all study times. Discussion: The results suggest that the combination of intra-articular PRGF with intra-osseous PRGF or AMSCs achieves better results in rabbits with acute chondral defects and that intra-osseous infiltration is a safe procedure.
- Changes in hematological and biochemical profiles in ovariohysterectomized bitches using an Alfaxalone-Midazolam-Morphine-Sevoflurane protocol
2022-04-02 The aim of this study was to monitor hematochemical changes during and after OHE in bitches. Twenty-four females were anesthetized with alfaxalone, midazolam, morphine and sevoflurane. Blood samples were taken before anesthesia (T0), at 30 (T1), and 60 min (T2), at 3 (T3), 6 (T4), 12 (T5), and 24 h (T6), and at 3 (T7) and 7 days (T8) from the start of surgery. Red blood cells (RBC) and packed cell volume (PCV) decreased significantly from T1 to T5 and hemoglobin (HB) concentration from T4 to T6. Both the white blood cell (WBC) and neutrophil (NFS) count increased significantly from T3 to T6, monocyte (MON) from T2 to T5, and eosinophil (EOS) at T5. Platelet (PLT) and plateletcrit (PCT) significantly decreased at T5 and increased from T6 to T8; platelet distribution width (PDW) increased significantly from T3 to T6. Creatine kinase (CK) activity increased significantly from T5 to T7. Glucose (GLU) concentrations increased significantly at T2 and P from T2 to T3. TG levels decreased from T2 to T4 and blood urea nitrogen (BUN) levels from T1 to T7, subsequently increasing until T8. Changes possibly resulting from stress and surgical trauma, as well as hemodilution and splenic storage, are due to anesthesia and surgery. In healthy bitches, these changes tend to gradually stabilize after the ending of OHE. A post-operative follow-up is essential to detect possible post-operative complications.
- Cell and cell free therapies in osteoarthritis
2021-11-19 Osteoarthritis (OA) is the most common articular disease in adults and has a current prevalence of 12% in the population over 65 years old. This chronic disease causes damage to articular cartilage and synovial joints, causing pain and leading to a negative impact on patients’ function, decreasing quality of life. There are many limitations regarding OA conventional therapies—pharmacological therapy can cause gastrointestinal, renal, and cardiac adverse effects, and some of them could even be a threat to life. On the other hand, surgical options, such as microfracture, have been used for the last 20 years, but hyaline cartilage has a limited regeneration capacity. In recent years, the interest in new therapies, such as cell-based and cell-free therapies, has been considerably increasing. The purpose of this review is to describe and compare bioregenerative therapies’ efficacy for OA, with particular emphasis on the use of mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP). In OA, these therapies might be an alternative and less invasive treatment than surgery, and a more effective option than conventional therapies.
- Objective comparison between platelet rich plasma alone and in combination with physical therapy in dogs with osteoarthritis caused by hip dysplasia
2021-04-30 Osteoarthritis (OA) is one of the most significant joint diseases worldwide. There are di erent therapies for OA treatment, and a relatively new strategy is the use of plasma rich in growth factors (PRGF), a platelet rich plasma (PRP) derivative. The objective of this study was to objectively assess the e cacy and duration of the e ect of an intraarticular injection of PRGF and a combination of PRGF + physical therapy. The objective assessment was provided using a force platform. The obtained parameters were peak vertical force (PVF) and vertical impulse (VI). A total of 24 dogs with lameness and pain associated to OA attributable to bilateral hip dysplasia were included in the study. Animals were divided into two study groups and evaluated at baseline and at 30, 90, and 180 days after intraarticular PRGF or PRGF + physical therapy. Significant di erences were observed at every checkpoint with respect to basal time in both groups. However, after 180 days, the PRGF group showed a decrease in PVF and VI with respect to the values obtained at 90 days. However, the PRGF + physical therapy group maintained increased values of both PVF and VI values during the 180-day study period.