Dpto. Odontología
Permanent URI for this collectionhttps://hdl.handle.net/10637/10414
Search Results
- Degradation of adhesive-dentin interfaces created using different bonding strategies after five-year simulated pulpal pressure
2019-06-07 Purpose: To compare after five-year simulated pulpal pressure (SPP) the degradation of adhesive-dentin interfaces created using two simplified adhesives applied with different bonding strategies. Materials and Methods: A two-step self-etch (CSE: Clearfil SE Bond) adhesive was used as a control multistep adhesive. The tested experimental materials were two simplified adhesives, a one-step self-etch (CS3: Clearfil S3 Bond) and a self-priming etch-and-rinse adhesive (SB2: Adper Single-Bond 2). Half of the bonded specimens were submitted to microtensile bond strength (μTBS) testing after 24 h. The other half submitted to SPP for five years before μTBS testing. Nonfractured sticks were evaluated using transmission electron microscopy (TEM). Scanning electron microscopy (SEM) was used to evaluate silver-nitrate nanoleakage within the interface. Data were statistically analyzed by two-way ANOVA and Tukey’s test (p < 0.05). Results: Prolonged SPP induced bond-strength reduction for both SB2 and CS3. All bonding approaches showed increased nanoleakage after aging. The two simplified adhesives showed severe degradation at the resin-dentin interface. TEM revealed that the main degradation patterns for the etch-and-rinse adhesive SB2 was collagen breakdown, while polymer hydrolysis along with filler debonding was mainly observed in CS3. Conclusions: Simplified adhesives applied in etch-and-rinse mode are mainly characterized by hydrolysis and collagen degradation. In self-etch mode, simplified adhesives may principally show hydrolysis of the polymeric matrix and/or at the interface of fillers and coupling agent. The use of multistep self-etching adhesives may guarantee greater dentin bond durability compared to simplified adhesives.
- Effects of ions-releasing restorative materials on the dentine bonding longevity of modern universal adhesives after load-cycle and prolonged artificial saliva aging
2019-03-01 This study aimed at evaluating the microtensile bond strength (MTBS) and fractographic features of dentine-bonded specimens created using universal adhesives applied in etch-and-rinse (ER) or self-etching (SE) mode in combination with modern ion-releasing resin-modified glass-ionomer cement (RMGIC)-basedmaterials after load cycling and artificial saliva aging. Two universal adhesives (FTB: Futurabond M+, VOCO, Germany; SCU: Scotchbond Universal, 3M Oral Care, USA) were used. Composite build-ups were made with conventional nano-filled composite (AURA, SDI, Australia), conventional resin-modified glass ionomer cement (Ionolux VOCO, Germany), or a (RMGIC)-based composite (ACTIVA, Pulpdent, USA). The specimens were divided in three groups and immersed in deionized water for 24 h, load-cycled (350,000 cycles; 3 Hz; 70 N), or load-cycled and cut into matchsticks and finally immersed for 8 months in artificial saliva (AS). The specimens were cut into matchsticks and tested for microtensile bond strength. The results were analyzed statistically using three-way ANOVA and Fisher’s LSD post hoc test (p < 0.05). Fractographic analysis was performed through stereomicroscope and FE-SEM. FTB showed no significant drop in bond strength after aging. Unlike the conventional composite, the two RMGIC-based materials caused no bond strength reduction in SCU after load-cycle aging and after prolonged aging (8 months). The SEM fractographic analysis showed severe degradation, especially with composite applied on dentine bonded with SCU in ER mode; such degradation was less evident with the two GIC-based materials. The dentine-bond longevity may be influenced by the composition rather than the mode of application (ER vs. SE) of the universal adhesives. Moreover, the choice of the restorative material may play an important role on the longevity of the finalrestoration. Indeed, bioactive GIC-based materials may contribute to maintain the bonding performance of simplified universal adhesives over time, especially when these bonding systems are applied in ER mode.
- Antibacterial and remineralizing fillers in experimental orthodontic adhesives
2019-02-21 Orthodontic adhesives with antimicrobial and remineralizing properties may be an alternative to control white spot lesions around brackets. The aim of this study is to develop an experimental orthodontic adhesive containing boron nitride nanotubes (BNNT) and alkyl trimethyl ammonium bromide (ATAB). Methacrylate (BisGMA and TEGDMA) monomers were used to formulate the adhesives. Four experimental groups were produced with the addition of 0.1 wt.% BNNT (GBNNT); 0.1 wt.% ATAB (GATAB); and 0.2 wt.% BNNT with ATAB (GBNNT/ATAB); in the control group, no fillers were added (GCtrl). The degree of conversion, cytotoxicity, softening in solvent, contact angle and free surface energy, antibacterial activity, shear bond strength, and mineral deposition were evaluated. Adhesives achieved degree of conversion higher than 50% and cell viability higher than 90%. GBNNT and GATAB adhesives exhibited reduced softening in solvent. Mean free surface energy was decreased in the GBNNT adhesive. Significant reduction in bacterial growth was observed in the GBNNT/ATAB. No statistical difference was found for shear bond strength. Mineral deposition was found in GBNNT, GATAB, and GBNNT/ATAB groups after 14 and 28 days. The addition of 0.2% BNNT/ATAB to an experimental orthodontic adhesive inhibited bacterial growth and induced mineral deposition without affecting the properties of the material.
- Physicochemical and microbiological assessment of an experimental composite doped with Triclosan-Loaded Halloysite Nanotubes
2018-07-01 This study is aimed at evaluating the effects of triclosan-encapsulated halloysite nanotubes (HNT/TCN) on the physicochemical and microbiological properties of an experimental dental composite. A resin composite doped with HNT/TCN (8% w/w), a control resin composite without nanotubes (HNT/TCN-0%) and a commercial nanofilled resin (CN) were assessed for degree of conversion (DC), flexural strength (FS), flexural modulus (FM), polymerization stress (PS), dynamic thermomechanical (DMA) and thermogravimetric analysis (TGA). The antibacterial properties (M) were also evaluated using a 5-day biofilm assay (CFU/mL). Data was submitted to one-way ANOVA and Tukey tests. There was no significant statistical difference in DC, FM and RU between the tested composites (p > 0.05). The FS and CN values attained with the HNT/TCN composite were higher (p < 0.05) than those obtained with the HNT/TCN-0%. The DMA analysis showed significant differences in the TAN (p = 0.006) and Tg (p = 0) between the groups. TGA curves showed significant differences between the groups in terms of degradation (p = 0.046) and weight loss (p = 0.317). The addition of HNT/TCN induced higher PS, although no significant antimicrobial effect was observed (p = 0.977) between the groups for CFUs and (p = 0.557) dry weight. The incorporation of HNT/TCN showed improvements in physicochemical and mechanical properties of resin composites. Such material may represent an alternative choice for therapeutic restorative treatments, although no significance was found in terms of antibacterial properties. However, it is possible that current antibacterial tests, as the one used in this laboratory study, may not be totally appropriate for the evaluation of resin composites, unless accompanied with aging protocols (e.g., thermocycling and load cycling) that allow the release of therapeutic agents incorporated in such materials.
- Multi-functional nano-adhesive releasing therapeutic ions for MMP-deactivation and remineralization
2018-04-04 Restoration of hard tissue in conjunction with adhesive is a globally challenging issue in medicine and dentistry. Common clinical therapies involving application of adhesive and substitute material for functional or anatomical recovery are still suboptimal. Biomaterials with bioactivity and inhibitory effects of enzyme-mediated adhesive degradation can render a solution to this. Here, we designed a novel copper-doped bioactive glass nanoparticles (CuBGn) to offer multifunction: metalloproteinases (MMP) deactivation and remineralization and incorporated the CuBGn in resin-dentin adhesive systems, which showed most common failure of MMP mediated adhesive degradation among hard tissue adhesives, to evaluate proposed therapeutic effects. A sol-gel derived bioactive glass nanoparticles doping 10 wt% of Cu (Cu-BGn) for releasing Cu ions, which were well-known MMP deactivator, were successfully created and included in light-curing dental adhesive (DA), a filler-free co-monomer resin blend, at different concentrations (up to 2 wt%). These therapeutic adhesives (CuBGn-DA) showed enhanced (a)cellular bioactivity, cytocompatibility, microtensile bond strength and MMP deactivationability. In conclusion, the incorporation of Cu ions releasing nano-bioactive glass demonstrated multifunctional properties at the resin-dentin interface; MMP deactivation and remineralization, representing a suitable strategy to extend the longevity of adhesive-hard tissue (i.e. resin-dentin) interfaces.
- The effect of zoledronate-containing primer on dentin bonding of a universal adhesive
2018-01-01 Objectives. To evaluate the bonding ability and nanoleakage of an universal adhesive applied to dentin after zoledronate-containing primer (zol-primer) before and after mechanical load cycling. Materials and Methods. Flat superficial dentin surfaces were exposed on human molars and ascribed to one of the following adhesion procedures (n=6): 1-Adper Single Bond Universal (SBU) applied in etch-and-rinse mode, 2- SBU applied as etch-and-rinse after the application of zol-primer, 3- SBU applied in self-etch strategy, and 4- SBU applied as self-etch after the use of zol-primer. Half of bonded teeth were processed for microtensile bond strength test after 24h and further were cut and surveyed after 200,000 mechanical cycles. Silver-impregnated specimens were assayed for interface nanoleakage by SEM. Data were analyzed by two-way ANOVA and Tukey’s test (p<0.05). Results. At immediate evaluation, the four presented similar bond strengths, whilst both groups bonded with etch-and-rinse technique had significant bond strength reduction after mechanical load (p<0.05), with higher drop for zol-primer group. No negative effects were found for self-etch strategy (p>0.05) in microtensile test. Lower nanoleakage was observed for etch-and-rinse specimens treated with zol-primer. However, noteworthy reduction of adhesive layer thickness was observed with the combination of zol-primer and self-etch strategy. Conclusion. It can be concluded that zol-primer should not be used along with an universal adhesive in etch-and-rinse mode, but its application before self-etch application provides minor alterations.