Dpto. Odontología
Permanent URI for this collectionhttps://hdl.handle.net/10637/10414
Search Results
- Compressive strength and porosity evaluation of innovative bidirectional spiral winding fiber reinforced composites
2022-11-15 The aim of this in vitro study was to investigate the compressive strength and the bulk porosity of a bidirectional (bFRC) and an experimental bidirectional spiral winding reinforced fiber composite (bswFRC). Cylindrical-shape specimens were prepared for each material group and processed for the evaluation of compressive strength after different storage conditions (dry, 1 and 3 months) in distilled water at 37 C. The specimens were also assessed for the degree of bulk porosity through X-ray tomography. A scanning electron microscope (SEM) was used to determine the fracture mode after a compressive strength test. Data were statistically analyzed using Two-Way Analysis of Variance (ANOVA). A significantly lower compressive strength was obtained in dry conditions, and after 1 month of water immersion, with the specimens created with bFRC compared to those made with bswFRC (p < 0.05). No significant difference (p > 0.05) was found between the two groups after 3 months of water immersion. However, the presence of water jeopardized significantly the compressive strength of bswFRC after water storage. The type of fracture was clearly different between the two groups; bswFRC showed a brutal fracture, whilst bFRC demonstrated a shear fracture. The bswFRC demonstrated higher pore volume density than bFRC. In conclusion, bswFRC is characterized by greater compressive strength compared to bFRC in dry conditions, but water-aging can significantly decrease the mechanical properties of such an innovative FRC. Therefore, both the novel bidirectional spiral winding reinforced fiber composites (bswFRC) and the bidirectional fiber reinforced composites (bFRC) might represent suitable materials for the production of post-and-core systems via CAD/CAM technology. These findings suggest that both FRC materials have the potential to strengthen the endodontically treated teeth.
- A micro-CT analysis of initial and long-term pores volume and porosity of bioactive endodontic sealers
2022-09-26 The evaluation of the porosities within the interface of root canals obturated with endodontics materials is extremely important for the long-term success of endodontic treatments. The aim of this study was to compare initial and long-term volume of pores (total, open, closed) and porosity (total, regional) of three bioactive endodontic sealers: GuttaFlow Bioseal, Total Fill BC Sealer, and Bio- Root RCS. Root canals were obturated with three “bioactive” sealers using the single-cone technique. The volume of open and closed pores and porosity were calculated using a micro-computed tomography (MCT) method. The measurements were performed after 7 days (initial) and after 6 months (long-term) of incubation. Statistical significance was considered at p < 0.05. The total volume of pores remained unchanged after the 6-month storage. GuttaFlow Bioseal exhibited significantly higher long-term volume in open pores than Total Fill BC Sealer. The total porosity in all the tested sealers presented no statistically significant change after the 6-month storage, except for BioRoot RCS. The total porosity values of this latter material significantly increased after long-term incubation, especially in the apical region. In conclusion, the use of bioactive sealers with excessive tendency to create porosities both in shorth- and long-term periods of storage may compromise the long-term success of endodontic treatments.
- Impacts of resveratrol and pyrogallol on physicochemical, mechanical and biological properties of epoxy-resin sealers
2022-02-22 This study aimed at evaluating the physicochemical and biological properties of experimental epoxy-resin sealers containing polyphenols such as resveratrol and pyrogallol. A conventional epoxy resin (OB) was modified by adding different concentrations of resveratrol (RS) or pyrogallol (PY) to its composition. Antibacterial and antioxidant activities, mechanical properties, along with wettability and morphological changes were investigated. The results were statistically analyzed using ANOVA and multiple comparison tests ( = 0.05). The incorporation of the tested polyphenols into the epoxy resin enhanced its mechanical properties. PY demonstrated much better antioxidant and antibacterial activities than RS, which were associated with a higher release of PY. In contrast, PY showed a higher cytotoxicity than OB and OB doped with RS. OB containing PY presented a rougher surface and higher water absorption than OB doped with RS. Both tested polyphenols caused no notable changes to the overall porosity of OB. Resveratrol and pyrogallol may not only influence the morphology and mechanical properties of epoxy-resin sealers, but could also enhance antioxidant activity and antibacterial effects against Enterococcus faecalis. Most epoxy-resin sealers currently available in the market can be considered as “passive” materials. Thus, doping their composition with specific polyphenols may be a suitable strategy to confer some antibacterial properties, antioxidant potential, along with improvement of some mechanical properties.
- Traditional microscopic techniques employed in dental adhesion research-applications and protocols of specimen preparation
2021-10-21 Microscopy is a traditional method to perform ex vivo/in vitro dental research. Contemporary microscopic techniques offer the opportunity to observe dental tissues and materials up to nanoscale level. The aim of this paper was to perform a literature review on four microscopic methods, which are widely employed in dental studies concerning the evaluation of resin-dental adhesive interfaces—confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The literature search was performed using digital databases: PubMed, Web of Science and Scopus. On the basis of key words relevant to the topic and established eligibility criteria, finally 84 papers were included in the review. Presented microscopic techniques differ in their principle of operation and require specific protocols for specimen preparation. With regard to adhesion studies, microscopy assists in the description of several elements involved in adhesive bonding, as well as in the assessment of the condition of enamel surface and the most appropriate etching procedures. There are several factors determining the quality of the interaction between the substrates which could be recognized and a potential for further implementation of microscopic techniques in dental research could be recognized, especially when these techniques are used simultaneously or combined with spectroscopic methods. Through such microscopy techniques it is possible to provide clinically relevant conclusions and recommendations, which can be easily introduced for enamel-safe bonding and bonding protocols, as well as optimal pretreatments in dentine preparation.