Dpto. Odontología

Permanent URI for this collectionhttps://hdl.handle.net/10637/10414

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Publication
    UCH
    Evaluation of the physicochemical and antibacterial properties of experimental adhesives doped with Lithium Niobate2020-06-11

    The aim of the present study was to formulate dental adhesives with di erent concentrations of LiNbO3 and to evaluate their physicochemical and antibacterial properties. A dental adhesive was formulated using methacrylate monomers and photoinitiators and used as a control filler-free group. Subsequently, three experimental adhesives doped with LiNbO3 at di erent concentrations (1 wt.%, 2 wt.%, and 5 wt.%) were also formulated. All the experimental adhesives were assessed to evaluate the degree of conversion (DC), softening in solvent, immediate and long-term microtensile bond-strength ( -TBS), radiopacity, ultimate tensile strength, and antibacterial activity. The incorporation of 1 wt.% of LiNbO3 had no negative e ect on the DC of the adhesive resin compared to the control group (p > 0.05). We observed a decrease in the percentage of softening in solvent in the group LiNbO3 at 1 wt.% (p < 0.05). The addition of LiNbO3 increased the radiopacity at a concentration above 2 wt.%, and there was also an increase in cohesive strength (p < 0.05). The immediate -TBS increased for LiNbO3 at 5 wt.% (p < 0.05), and there was no statistical di erence for the other groups compared to the control (p > 0.05). After six months, the group with 5 wt.% still presented the highest -TBS (p < 0.05). The adhesives showed no antimicrobial activity (p > 0.05). LiNbO3 was successfully incorporated in dental adhesives, increasing the radiopacity and their resistance to degradation. Although LiNbO3 o ered no antibacterial properties, the reliability of LiNbO3 incorporation in the adhesive encourages new tests to better investigate the antimicrobial action of LiNbO3 through temperature variation.

  • Thumbnail Image
    Publication
    UCH
    Dental sealant empowered by 1,3,5-Tri Acryloyl Hexahydro-1,3,5-Triazine and Alpha-Tricalcium Phosphate for anti-caries application2020-04-12

    Quaternary ammonium compounds and calcium phosphates have been incorporated into dental materials to enhance their biointeractivity and preventive e ects. This study aimed at evaluating the physical and chemical properties and e ects against Streptococcus mutans of a dental sealant containing 1,3,5-tri acryloyl hexahydro-1,3,5-triazine (TAT) and -tricalcium phosphate ( -TCP). A methacrylate-based dental sealant was initially formulated. -TCP and TAT (G -TCPTAT) were added to the experimental sealant at 2 wt.% each. One group was formulated without -TCP and TAT and used as control (GCTRL). All tested resins were analyzed for polymerization kinetics and degree of conversion (DC %), Knoop hardness (KHN), softening in solvent (DKHN%), ultimate tensile strength (UTS), the contact angle with water or with -bromonaphthalene, surface free energy (SFE) and antibacterial activity against Streptococcus mutans in biofilm and in planktonic cells. The polymerization kinetic was di erent between groups, but without statistical di erences in the DC % (p < 0.05). KHN and DKHN% did not change between groups (p > 0.05), but G -TCPTAT presented greater UTS compared to GCTRL (p < 0.05). No di erences were found for contact angle (p > 0.05) or SFE (p > 0.05). G -TCPTAT showed greater antibacterial activity in comparison to GCTRL (p < 0.05). The formulation of dental sealants containing TAT and -TCP can be characterized by improved mechanical and antibacterial properties.

  • Thumbnail Image
    Publication
    UCH
    Determining the effects of Eugenol on the bond strength of resin-based restorative materials to dentin : a meta-analysis of the literature2020-02-05

    The aim of this study was to determine whether the residual presence of eugenol in coronal dentin may compromise the bond strength of resin-based restorative materials. A search was performed on MEDLINE/Pubmed, Scopus, and by hand search for relevant papers. No restriction was applied for language and publication date. The studies selected for analysis tested specimens with reduced size (micro-shear bond strength ( SBS) and micro-tensile bond strength ( TBS)) of adhesive systems and resin-based restorative materials applied to coronary dentin “contaminated” with eugenol-based materials. The search provided 335 articles, but only 10 studies met the inclusion criteria. The pooled global analysis showed a significant influence of eugenol, as it negatively influenced the bond strength of resin-based restorations (5.79 (3.31–8.28) MPa, p < 0.00001). The subgroup analyses for conventional etch-and-rinse (p = 0.003) and self-etch (p < 0.0004) adhesive systems, as well as for SBS (p = 0.01) and TBS (p < 0.0001), showed a negative influence of eugenol on the bond strength. Data were statistically heterogeneous. However, it was possible to observe that eugenol could negatively a ect the bonding of resin-based restorative materials to dentin. Further evidence is necessary in order to acquire more accurate information about this issue and confirm that the residual presence of eugenol in dentin compromises the bond strength of resin-based materials.

  • Thumbnail Image
    Publication
    UCH
    In vitro bonding performance of modern self-adhesive resin cements and conventional resin-modified glass ionomer cements to prosthetic substrates2020-11-18

    This study aimed at evaluating the shear bond strength (SBS) of modern self-adhesive resin cements and resin-modified glass ionomer cements applied to di erent prosthetic substrates. Zirconia, lithium-disilicate glass-ceramic and a noble metal alloy were used as bonding substrates. They were all sand-blasted with alumina, while LD was further etched with 9.6% hydrofluoric acid (10 s). A light-curing resin-modified glass ionomer cement (3M-GIC: Ketac Cem Plus) and a self-curing resin-modified glass ionomer cement (GC-GIC: FujiCEM 2) were compared to self-adhesive resin cements (PAN: Panavia SA Universal) and (3M-RES: Rely X Unicem 2). Ten specimens for each substrate were produced and up to five cylinders of each cement were bonded to each substrate. The shear bond strength (SBS) was evaluated after 24 h or after thermocycling (TC) aging (5000 cycles). The data was statistically analysed by two-way ANOVA and Student–Newman–Keuls test ( = 0.05). Failure modes were analysed through stereoscopic microscopy. The greatest SBS was attained with PAN, whilst 3M-GIC showed the lowest SBS and failed prevalently in adhesive mode. No di erence in SBS was observed between GC-GIC and 3M-RES. After TC aging, all cements showed significant drop (p < 0.05) in SBS, but PAN showed the greatest SBS. Reliable bond strength to prosthetic substrates can be achieved with specific universal resin-luting cements and may be an alternative to glass ionomer cements when luting alloy substrates.

  • Thumbnail Image
    Publication
    UCH
    Boron nitride nanotubes as filler for resin-based dental sealants.2019-05-22

    The aim of this study was to evaluate the infuence of boron-nitride nanotubes (BNNTs) on the properties of resin-based light-curing dental sealants (RBSs) when incorporated at diferent concentration. RBSs were formulated using methacrylate monomers (90 wt.% TEGDMA, 10 wt.% BisGMA). BNNTs were added to the resin blend at 0.1 wt.% and 0.2 wt.%. A Control group without fller was also designed. Degree of conversion, ultimate tensile strength, contact angle, surface free energy, surface roughness and color of the RBSs were evaluated for the tested materials. Their cytotoxicity and mineral deposition ability (Bioactivity) were also assessed. A suitable degree of conversion, no efect in mechanical properties and no cytotoxic efect was observed for the experimental materials. Moreover, the surface free energy and the surface roughness decreased with the addition of BNNTs. While the color analysis showed no diference between specimens containing BNNTs and the control group. Mineral deposition occurred in all specimens containing BNNTs after 7d. In conclusion, the incorporation of BNNTs may provide bioactivity to resin-based dental sealants and reduce their surface free energy.