Browsing by Author "Yoshihara, Kumiko"
- Results Per Page
- Sort Options
- Contemporary restorative ion-releasing materials : current status, interfacial properties and operative approaches
2020-10-09 Minimally invasive (MI) concepts in restorative dentistry in the year 2020 request from the practitioner, not only a scientifically supported rational for carious tissue removal/excavation and defect-oriented, biological cavity preparation, but also a deep understanding of how to ensure a biomechanically stable and durable restoration in different clinical situations by applying different restorative options. Bio-reactive materials play an increasingly relevant role, as they not only replace diseased or lost tissue but also optimise tissue mineral recovery (among other properties) when used in restorative and preventive dentistry. Indeed, this is of certain interest in MI restorative dentistry, especially in those cases where gap formation jeopardises the integrity of the margins along resin composite restorations, causing penetration of bacteria and eventually promoting the formation of secondary caries. Recently, the interest on whether ion-releasing materials may reduce such biofilm penetration into margin gaps and reduce such a risk for development and propagation of secondary caries is growing significantly among clinicians and scientists. The aim of this article was to explore mechanisms involved in the process that allow mineral deposition at the interface between such materials and dentine and describe how conventional “bioactive” restorative materials currently available on the market may beneficial treatments in MI Dentistry.
- Degradation of adhesive-dentin interfaces created using different bonding strategies after five-year simulated pulpal pressure
2019-06-07 Purpose: To compare after five-year simulated pulpal pressure (SPP) the degradation of adhesive-dentin interfaces created using two simplified adhesives applied with different bonding strategies. Materials and Methods: A two-step self-etch (CSE: Clearfil SE Bond) adhesive was used as a control multistep adhesive. The tested experimental materials were two simplified adhesives, a one-step self-etch (CS3: Clearfil S3 Bond) and a self-priming etch-and-rinse adhesive (SB2: Adper Single-Bond 2). Half of the bonded specimens were submitted to microtensile bond strength (μTBS) testing after 24 h. The other half submitted to SPP for five years before μTBS testing. Nonfractured sticks were evaluated using transmission electron microscopy (TEM). Scanning electron microscopy (SEM) was used to evaluate silver-nitrate nanoleakage within the interface. Data were statistically analyzed by two-way ANOVA and Tukey’s test (p < 0.05). Results: Prolonged SPP induced bond-strength reduction for both SB2 and CS3. All bonding approaches showed increased nanoleakage after aging. The two simplified adhesives showed severe degradation at the resin-dentin interface. TEM revealed that the main degradation patterns for the etch-and-rinse adhesive SB2 was collagen breakdown, while polymer hydrolysis along with filler debonding was mainly observed in CS3. Conclusions: Simplified adhesives applied in etch-and-rinse mode are mainly characterized by hydrolysis and collagen degradation. In self-etch mode, simplified adhesives may principally show hydrolysis of the polymeric matrix and/or at the interface of fillers and coupling agent. The use of multistep self-etching adhesives may guarantee greater dentin bond durability compared to simplified adhesives.
- Lack of neutralization of 10-MDP primers by zirconia may affect the degree of conversion of dual-cure resin cement
2021-01-07 Objective: To assess the effects of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) included in experimental ceramic primers on the degree of conversion (DC) and microshear bond strength (μSBS) of a dual-cure resin cement, and on the acidity neutralization potential of zirconia (ZrO2) in comparison to hydroxyapatite (HAp). Methods: Experimental ceramic primers were formulated using 5 wt%, 10 wt%, 20 wt%, or 40 wt% 10-MDP as an acidic functional monomer and camphorquinone (CQ)/amine or 1-phenyl-1,2- propanedione (PPD) as a photoinitiator system. Clearfil Ceramic Primer (Kuraray Dental, Tokyo, Japan) was used as the commercial control. Micro- Raman spectroscopy was used to assess the DC of uncured and light-cured resin cements applied onto primer-treated ZrO2 surfaces. The μSBS and pH of primers were assayed in a universal testing machine and by a digital pH meter (Tec-3MP; Tecnal, Piracicaba, Brazil), respectively. Statistical analysis was performed by one-way analysis of variance (ANOVA) and Tukey’s test (p<0.05). Results: DC was not affected until a concentration of 10% 10-MDP in CQ primer and 5% 10-MDP in PPD primer was reached, when compared with the positive control (p>0.05). Groups 10-MDP 5% in CQ and PPD primers showed the highest μSBS compared with the positive control (p>0.05); however, higher concentrations of 10-MDP induced significant DC and μSBS reduction (p<0.05). HAp neutralized 10-MDP primers, but ZrO2 provided higher acidity to the primers’ pH. Conclusion: 10-MDP monomer should be used in low concentrations in ZrO2 primers to avoid reduction of the polymerization and bond strength of resin cement.