Browsing by Author "Toro Hernando, María de"
- Results Per Page
- Sort Options
- Antibiotic removal does not affect cecal microbiota balance and productive parameters in LP robust rabbit line
2022-11-07 Mycobacteriosis is an important disease that affects captive and wild aquatic fish. Syngnathids are susceptible to infection by non-tuberculous mycobacteria. The aim of this study was to describe clinical signs, and macroscopic and histological lesions in 25 syngnathids and the molecular characterization of the causative mycobacteria. Clinical presentation ranged from sudden death to non-specific signs, including anorexia, poor body condition, weight loss and marked dyspnea with increased respiratory effort and rate. Gross lesions were mostly ulcers on the tail and small white nodules in the liver, coelomic cavity and inside the eye. The most affected organs were gills, liver, intestine and coelomic mesentery. Microscopic lesions consisted of areas of multifocal to diffuse granulomatous inflammation and bacterial emboli with numerous intralesional acid-fast bacilli. Epithelioid cells, multinucleated giant cells, lymphocytes and fibrous connective tissue, which are commonly observed in granulomatous inflammation, were not observed here. In the real-time PCR, M. fortuitum, M. chelonae and M. marinum common primers, Mycobacterium spp. were detected in 4, 7 and 14 individuals, respectively. In addition, this is the first description of mycobacteriosis found in Syngnathus acus.
- Assessment of microbiota modulation in poultry to combat infectious diseases
2022-03-05 Poultry is one of the main agricultural sub-sectors worldwide. However, public concern regarding animal welfare and antimicrobial resistance has risen in recent years. Due to the influence of management practices on microbiota, it might be considered to evaluate poultry welfare and health. Therefore, the objective of this research was to analyse the influence on microbiota balance of broilers under commercial and optimal farm conditions, using 16S rRNA sequencing analysis. The research was performed in two identical poultry houses (commercial vs. optimal). Results showed a higher level of microbiota complexity in the group reared under optimal farm conditions at the end of rearing. Regarding microbiota composition, Firmicutes was the dominant phylum during the entire growing period. However, the second most prevalent phylum was Proteobacteria at the arrival day, and Bacteroidetes from the mid-period onward in both groups. Moreover, the most predominant genera identified were Oscillospira, Ruminococcus, Bacteroides, and Coprococcus. In conclusion, it is necessary to optimize farm management as much as possible. Using gut microbiota diversity and composition as biomarkers of animal health could be an important tool for infectious disease control, with the aim of reducing the administration of antibiotics at field level.
- Fast and slow-growing management systems : characterisation of broiler caecal microbiota development throughout the growing period
2020-08-12 Caecal microbiota and its modulation play an important role in poultry health, productivity and disease control. Moreover, due to the emergence of antimicrobial-resistant bacteria, society is pressing for a reduction in antibiotic administration by finding e ective alternatives at farm level, such as less intensified production systems. Hence, the aim of this study was to characterise the caecal microbiota in two di erent broiler management systems, fast and slow-growing, using 16S rRNA sequencing analysis. To this end 576 broilers were reared in two di erent management systems (fast and slow-growing). Results showed that Firmicutes represented the dominant phylum for both systems. At the onset, Proteobacteria was the second prevalent phylum for fast and slow-growing breeds, outnumbering the Bacteroidetes. However, during the rest of the production cycle, Bacteroidetes was more abundant than Proteobacteria in both groups. Finally, regardless of the management system, the most predominant genera identified were Oscillospira spp., Ruminococcus spp., Coprococcus spp., Lactobacillus spp. and Bacteroides spp. In conclusion, fast and slow-growing broiler microbiota are in constant development throughout rearing, being relatively stable at 21 days of age. Regarding the genus, it should be noted that the three most abundant groups for both systems, Ruminococcus spp., Lactobacillus spp. and Bacteroides spp., are related to better productive performance and intestinal health.