Browsing by Author "Muñoz, C."
- Results Per Page
- Sort Options
- Aerobic exercise during pregnancy reverts maternal insulin resistance in rats.
1998-09-19T15:40:02Z Purpose and Methods: To determine whether pregnancy modifies the effect of aerobic exercise on insulin responsiveness, female rats were mated or kept nonpregnant and exercised or not on a treadmill (10° slope, 20 m·min-1) 5 d·wk-1 during a 20-min period that was increased progressively up to 70 min on the 19th d. On day 20, a hyperinsulinemic euglycemic clamp was performed with 0.8 IU insulin·h-1·kg-1 under conscious conditions. Results: Food intake and body weight, circulating lactic acid, glucose, and insulin as well as fetal body weight and number were unaffected by the exercise protocol. The rate of glucose infusion required to maintain basal glucose levels during the clamp was similar in exercised and nonexercised virgin rats and significantly lower in pregnant than in virgin nonexercised rats. However, in exercised pregnant rats the glucose infusion rate was almost as high as in the exercised virgin rats. Conclusions: The results show that although our aerobic exercise protocol does not affect insulin responsiveness in nonpregnant rats, it completely reverts the insulin resistance present in late pregnant rats.
- Carbohydrat-lipid interactions during gestation and their control by insulin.
1994-09-19T15:40:07Z I. During the first two thirds of gestation, coinciding with a minimal accretion by the conceptus, the mother is in an anabolic state which is supported by her hyperphagia and the more efficient conservation of exogenous nutrients when she eats. During this phase maternal fat deposits are accumulated thanks to the enhancement in adipose tissue lipogenic and glycerolgenic activity. In contrast, in the latter part of gestation, the rapid fetal growth is sustained by the intense transfer of nutrients from maternal circulation. 2. Glucose is quantitatively the most abundant of the several substrates that cross the placenta and despite increased maternal gluconeogenesis this transfer is responsible for the maternal tendency to hypoglycemia. This causes a switch to a net catabolic state which is especially evident in the net breakdown of fat depots. 3. Enhanced release of adipose tissue Iipolytic products, free fatty acids (FFA) and glycerol, facilitates the liver synthesis of triglycerides and their later release into circulation associated to very low-density lipoprotein (VLDL). Glycerol is also used as an important gluconeogenic substrate and FF As are broken down through 13-oxidation for ketone body synthesis. Flow through these pathways becomes increased when food is withheld and this actively contributes to the availability of fuels to the fetus which becomes partially preserved from maternal metabolic insult. Increased liver production of VLDL-triglycerides and decreased extrahepatic lipoprotein lipase contribute to exaggerated maternal hypertriglyceridemia which, besides being a floating metabolic reserve for emergency conditions such as starvation, constitutes an essential substrate for milk synthesis around parturition in preparation for lactation. 4. While the maternal anabolic tendencies found during the first two-thirds of gestation seem to be facilitated by hyperinsulinemia in the presence of a normal responsiveness to the hormone, it is proposed that most of the metabolic changes taking place during the last third of gestation seem to be caused by the insulin-resistant state which is consistently present at this stage, since its reversion caused by sustained exaggerated hyperinsulinemia also reverts several of these metabolic adaptations.
- Repercusiones metabólicas de la dieta rica en sacarosa en la rata gestante ejercitada.
1996-09-19T15:40:21Z La dieta rica en sacarosa (DRS) no modifica el peso corporal de la rata gestante ni de sus fetos. La práctica de un ejercicio aerobio moderado tampoco afecta a estos parámetros con independencia del tipo de dieta que ingieran o de su estado fisiológico. La respuesta metabólica a la DRS es diferente según el metabolito estudiado, así la hipertrigliceridemia es similar en ratas vírgenes y preñad3s, aunque en estas últimas el efecto de la DRS se suma al aumento de triglicéridos característico de la gestación. Los niveles de ácidos grasos libres no se modifican ni en vírgenes ni en preñadas como consecuencia de la DRS. En lo relativo a la glucemia e insulinemia existe una respuesta diferencial a la DRS dependiendo de que los animales estén o no preñados. Finalmente, la práctica de ejercicio reduce considerablemente la insulina en las ratas gestantes alimentadas con DRS o con la DC.