Browsing by Author "López-Soldado Fernández, Iliana"
- Results Per Page
- Sort Options
- A sucrose-rich diet during pregnancy causes a similar response in Sprague-Dawley and Wistar rats.
2001-09-19T15:39:46Z Background/Aims: In order to determine whether the response to a sucrose-rich diet (SRD) during pregnancy in the rat varies depending on the strain, the responsiveness to a SRD (63 g sucrose/100 g) during pregnancy in Wistar and Sprague-Dawley rats was studied. Methods: One group of rats of each strain was fed the SRD, whereas another group received the same diet except that sucrose was replaced by an equal amount of cornstarch. Half of the rats were mated, and all animals were studied 20 days later. Results: Initial body weight did not differ among groups, but final body weight of pregnant Wistar rats was lower than in Sprague-Dawley, and this difference corresponded to a decrease in fetal body weight in the former. Feeding a SRD did not modify pregnancy outcome in either rat strain. Plasma triglycerides increased with a SRD, although this effect was milder in Wistar pregnant rats than in the other groups. Adipose tissue lipoprotein lipase activity was lower in pregnant than in virgin rats, but no differences were found as result of either diet or rat strain. Liver triglyceride concentration increased in virgin rats fed SRD, the effect being greater in Sprague-Dawley than in Wistar rats. Conclusion: Differences in the response to a SRD in pregnant and virgin rats do not depend on the strain of rats used.
- Different diabetogenic response to moderate doses of streptozotocin in pregnant rats, and its long-term conseuquences in the offspring.
2003-09-19T15:40:09Z Diabetes during pregnancy results in congenital malformations and long-term postnatal diseases. Experimental models are still needed to investigate the mechanism responsible for these alterations. Thus, by the administration of different doses of streptozotocin (STZ) (0, 25, 30, or 35 mg/kg body weight, intravenous) at the onset of pregnancy in rats, the present study sought an appropriate animal model for this pathology. At day 6 of pregnancy, plasma glucose was progressively higher with an increasing STZ dose, and in rats receiving the 35-mg dose, 2 subgroups were detected: some animals had plasma glucose levels above controls but below 200 mg/dL (mildly diabetic, MD), whereas others had levels above 400 mg/dL (severely diabetic, SD). At day 20 of pregnancy, the MD rats had normal glycemia, but after an oral glucose load (2 g/kg body weight), plasma glucose increased more and insulin increased less than in controls. The SD rats maintained their hyperglycemia and had a greatly impaired oral glucose tolerance. At day 20, fetuses of SD dams were fewer, weighed less, and had enhanced plasma glucose and triglycerides and decreased insulin, whereas those from MD dams did not differ from controls. At birth, newborns from MD dams had higher body weight, plasma insulin, and liver triglycerides as well as total body lipid concentrations than controls, and on day 21, remained macrosomic and showed higher plasma glucose and liver triglyceride concentrations. At 70 days of age, offspring of MD dams had impaired oral glucose tolerance but normal plasma insulin change in the case of females, whereas plasma insulin increased less in males. These alterations were manifest more in those offspring from dams that had >50% macrosomic newborns than in those from dams that had <50% macrosomic newborns. In conclusion, whereas our MD rats mimic the changes taking place in gestational diabetic women and show the long-term risk of macrosomia, the SD rats are more similar to uncontrolled diabetics. Thus these two rat models, obtained with moderate amounts of STZ, could be used to study the pathophysiological consequences of these different diabetic conditions.
- Differential metabolic response to 48 h food deprivation at different times of pregnancy in the rat.
2001-09-19T15:39:45Z Since during pregnancy the mother switches from an anabolic to a catabolic condition, the present study was addressed to determine the effect of 48 h food deprivation on days 7, 14 and 20 of pregnancy in the rat as compared to age matched virgin controls. Body weight, free of conceptus, decreased with food deprivation more in pregnant than in virgin rats, with fetal weight (day 20) also diminishing with maternal starvation. The decline of plasma glucose with food deprivation was greatest in 20 day pregnant rats. Insulin was highest in fed 14 day pregnant rats, and declined with food deprivation in all the groups, the effect being not significant in 7-day pregnant rats. Food deprivation increased plasma glycerol only in virgin and 20 day pregnant rats. Plasma NEFA and 3-hydroxybutyrate increased with food deprivation in all groups, the effect being highest in 20 day pregnant rats. Food deprivation decreased plasma triacylglycerols in 14 day pregnant rats but increased in 20 day pregnant rats. In 20-day fetuses, plasma levels of glucose, NEFA and triacylglycerols were lower than in their mothers when fed, and food deprivation caused a further decline in plasma glucose, whereas both NEFA and 3-hydroxybutyrate increased. Liver triacylglycerols concentration did not differ among the groups when fed, whereas food deprivation caused an increase in all pregnant rats and fetuses, the effect being highest in 20-day pregnant rats. Lipoprotein lipase (LPL) activity in adipose tissue was lower in 20 day pregnant rats than in any of the other groups when fed, and it decreased in all the groups with food deprivation, whereas in liver it was very low in all groups when fed and increased with food deprivation only in 20 day pregnant rats. A significant increase in liver LPL was found with food deprivation in 20 day fetuses, reaching higher values than their mothers. Thus, the response to food deprivation varies with the time of pregnancy, being lowest at mid pregnancy and greatest at late pregnancy, and although fetuses respond in the same direction as their mothers, they show a specific response in liver LPL activity
- Long-term consequences of under-nutrition during suckling on glucose tolerance and lipoprotien profile in female and male rats.
2006-09-19T15:40:36Z To determine the effect of under-nutrition during suckling in adults, at delivery female Sprague Dawley rats were allowed to lactate litters of either eight (controls) or sixteen pups each (large litter, LL). The amount of milk taken by LL pups was less than the controls and the concentration of triacylglycerols (TG) in the milk of the former was lower. The increase of both body weight and length in LL was lower than in the controls during suckling. At weaning, pups were allowed to eat ad libitum a standard diet and whereas at 20 months female body weight did not differ between LL and control rats, LL males weighed less than controls. Plasma NEPA were lower in male LL than in controls at 10 months, leptin at 10 and 16 months and TG and VLDL-TG at 20 months, with no differences in females. When 20 months old, lumbar and epididymal adipose tissue weights were lower in male LL than in controls, but not in females. The increase in plasma insulin after oral glucose load was lower in LL than in controls, both in males and females at 4 and 16 months, and only in males at 10 months, whereas the change in plasma glucose remained constant between the groups. Results indicate that both the pancreatic [3-cell function and insulin sensitivity and adipose tissue metabolism are independently programmed as a consequence of under-nutrition during suckling, the effect being more manifest for males than for females.