Browsing by Author "González García, Jorge"
- Results Per Page
- Sort Options
- Alkaloids as photosensitisers for the inactivation of bacteria
2021-12-08 Antimicrobial photodynamic therapy has emerged as a powerful approach to tackle microbial infections. Photodynamic therapy utilises a photosensitiser, light, and oxygen to generate singlet oxygen and/or reactive oxygen species in an irradiated tissue spot, which subsequently react with nearby biomolecules and destroy the cellular environment. Due to the possibility to irradiate in a very precise location, it can be used to eradicate bacteria, fungus, and parasites upon light activation of the photosensitiser. In this regard, natural products are low-cost molecules capable of being obtained in large quantities, and some of them can be used as photosensitisers. Alkaloids are the largest family among natural products and include molecules with a basic nature and aromatic rings. For this study, we collected the naturally occurring alkaloids used to treat microorganism infections using a photodynamic inactivation approach. We gathered their main photophysical properties (excitation/emission wavelengths, quantum yields, and oxygen quantum yield) which characterise the ability to efficiently photosensitise. In addition, we described the antibacterial activity of alkaloids upon irradiation and the mechanisms involved in the microorganism killing. This review will serve as a reference source to obtain the main information on alkaloids used in antimicrobial photodynamic therapy.
- Development of potent tripodal G-quadruplex DNA binders and their efficient delivery to cancer cells by aptamer functionalised liposomes
2022-12-15 Two new ligands (TPB3P and TPB3Py) showing a strong stabilisation effect and good selectivity for G4 over duplex DNAs have been synthesised. The ligands hold three analogous polyamine pendant arms (TPA3P and TPA3Py) but differ in the central aromatic core, which is a triphenylbenzene moiety instead of a triphenylamine moiety. Both TPB3P and TPB3Py exhibit high cytotoxicity in MCF-7, LN229 and HeLa cancer cells in contrast to TPA-based ligands, which exhibit no significant cytotoxicity. Moreover, the most potent G4 binders have been encapsulated in liposomes and AS1411 aptamer-targeted liposomes reaching nanomolar IC50 values for the most cytotoxic systems.
- Impact of the zinc complexation of polytopic polyaza ligands on the interaction with double and single stranded DNA/RNA and antimicrobial activity
2023-03-27 Metal complexes have gained a huge interest in the biomedical research in the last decade because of the access to unexplored chemical space with regards to organic molecules and to present additional functionalities to act simultaneously as diagnostic and therapeutic agents. Herein, we evaluated the interaction of two polytopic polyaza ligands and their zinc complexes with DNA and RNA by UV thermal denaturation, fluorescence and circular dichroism spectroscopic assays. The zinc coordination was investigated by X-ray diffraction and afforded the structure of the binuclear zinc complex of PYPOD. Thermal denaturation of DNA and RNA and fluorimetry analysis revealed preferential binding of the zinc-PHENPOD complexes towards GC-containing DNA in contrast to the free ligands. On the other hand, PYPOD metal complexes, compared to the free ligand, stabilized AT-based DNA (B-form) better than AU-RNA (A-form). With regards to single stranded RNA, the binuclear complex of PHENPOD and the free ligand can efficiently identify polyadenylic acid (poly A) among other RNA sequences by circular dichroism spectroscopy. The antimicrobial activity in S. aureus and E. coli bacteria showed the highest activity for the free ligands and their trinuclear zinc complexes. This work can provide valuable insights into the impact of the nuclearity of polytopic polyaza ligands in the binding to DNA/RNA and the antimicrobial effect.