Browsing by Author "González Díaz, Humberto"
- Results Per Page
- Sort Options
- Diagnosing human anisakiasis: recombinant Ani s 1 and Ani s 7 allergens versus the UniCAP 100 fluorescence enzyme immunoassay
2010-11-07 Commercially available serological methods for serodiagnosis of human anisakiasis either are poorly specific or do not include some of the most relevant Anisakis allergens. The use of selected recombinant allergens may improve serodiagnosis. To compare the diagnostic and clinical values of enzyme-linked immunosorbent assay (ELISA) methods based on Ani s 1 and Ani s 7 recombinant allergens and of the UniCAP 100 fluorescence enzyme immunoassay (CAP FEIA) system, we tested sera from 495 allergic and 25 non-foodrelated allergic patients. The decay in specific IgE antibodies in serum was also investigated in 15 positive patients over a period of 6 to 38 months. Considering sera that tested positive by either Ani s 1 or Ani s 7 ELISA, the CAP FEIA classified 25% of sera as falsely positive, mainly in the group of patients with the lowest levels of anti-Anisakis IgE antibodies, and 1.28% of positive sera as falsely negative. Considering allergens individually, the overall sensitivities of Ani s 7 ELISA and Ani s 1 ELISA were 94% and 61%, respectively. The results also showed that anti-Anisakis IgE antibodies can be detected in serum for longer with Ani s 1 ELISA than with Ani s 7 ELISA and CAP FEIA (P < 0.01). Our findings suggest that ELISA methods with Ani s 7 and Ani s 1 allergens as targets of IgE antibodies are currently the best option for serodiagnosis of human anisakiasis, combining specificity and sensitivity. The different persistence of anti-Ani s 1 and anti-Ani s 7 antibodies in serum may help clinicians to distinguish between recent and old Anisakis infections.
- Palladium-mediated synthesis and biological evaluation of C-10b substituted Dihydropyrrolo[1,2-b]isoquinolines as antileishmanial agents
2021-08-26 The development of new molecules for the treatment of leishmaniasis is, a neglected parasitic disease, is urgent as current anti-leishmanial therapeutics are hampered by drug toxicity and resistance. The pyrrolo[ 1,2-b]isoquinoline core was selected as starting point, and palladium-catalyzed Heck-initiated cascade reactions were developed for the synthesis of a series of C-10 substituted derivatives. Their in vitro leishmanicidal activity against visceral (L. donovani) and cutaneous (L. amazonensis) leishmaniasis was evaluated. The best activity was found, in general, for the 10-arylmethyl substituted pyrroloisoquinolines. In particular, 2ad (IC50 ¼ 3.30 mM, SI > 77.01) and 2bb (IC50 ¼ 3.93 mM, SI > 58.77) were approximately 10-fold more potent and selective than the drug of reference (miltefosine), against L. amazonensis on in vitro promastigote assays, while 2ae was the more active compound in the in vitro amastigote assays (IC50 ¼ 33.59 mM, SI > 8.93). Notably, almost all compounds showed low cytotoxicity, CC50 > 100 mg/mL in J774 cells, highest tested dose. In addition, we have developed the first Perturbation Theory Machine Learning (PTML) algorithm able to predict simultaneously multiple biological activity parameters (IC50, Ki, etc.) vs. any Leishmania species and target protein, with high values of specificity (>98%) and sensitivity (>90%) in both training and validation series. Therefore, this model may be useful to reduce time and assay costs (material and human resources) in the drug discovery process.