Browsing by Author "Ferrer, Manuel"
- Results Per Page
- Sort Options
- A body weight loss- and health-promoting gut microbiota is established after bariatric surgery in individuals with severe obesity
2021-01-30 Obesity has reached an epidemic level worldwide, and bariatric surgery (BS) has been proven to be the most efficient therapy to reduce severe obesity-related comorbidities. Given that the gut microbiota plays a causal role in obesity development and that surgery may alter the gut environment, investigating the impact of BS on the microbiota in the context of severe obesity is important. Although, alterations at the level of total gut bacteria, total gene content and total metabolite content have started to be disentangled, a clear deficit exists regarding the analysis of the active fraction of the microbiota, which is the fraction that is most reactive to the BS. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics and metabolomics in 40 severely obese volunteers. Samples from each volunteer were obtained under basal conditions, after a short high protein and calorie-restricted diet, and 1 and 3 months after BS, including laparoscopic surgery through Roux-en-Y Gastric Bypass or Sleeve Gastrectomy. The results revealed for the first time the most active microbes and metabolic flux distribution pre- and post-surgery and deciphered main differences in the way sugars and short-fatty acids are metabolized, demonstrating that less energy-generating and anaerobic metabolism and detoxification mechanisms are promoted post-surgery. A comparison with non-obese proteome data further signified different ways to metabolize sugars and produce short chain fatty acids and deficiencies in proteins involved in iron transport and metabolism in severely obese individuals compared to lean individuals.
- Functional microbiome deficits associated with ageing: Chronological age threshold
2019-11-15 Composition of the gut microbiota changes during ageing, but questions remain about whether age is also associated with deficits in microbiome function and whether these changes occur sharply or progressively. The ability to define these deficits in populations of different ages may help determine a chronological age threshold at which deficits occur and subsequently identify innovative dietary strategies for active and healthy ageing. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics in three well‐defined age groups consisting of 30 healthy volunteers, namely, ten infants, ten adults and ten elderly individuals. Samples from each volunteer at intervals of up to 6 months (n = 83 samples) were used for validation. Ageing gradually increases the diversity of gut bacteria that actively synthesize proteins, that is by 1.4‐fold from infants to elderly individuals. An analysis of functional deficits consistently identifies a relationship between tryptophan and indole metabolism and ageing (p < 2.8e−8). Indeed, the synthesis of proteins involved in tryptophan and indole production and the faecal concentrations of these metabolites are directly correlated (r2 > .987) and progressively decrease with age (r2 > .948). An age threshold for a 50% decrease is observed ca. 11–31 years old, and a greater than 90% reduction is observed from the ages of 34–54 years. Based on recent investigations linking tryptophan with abundance of indole and other “healthy” longevity molecules and on the results from this small cohort study, dietary interventions aimed at manipulating tryptophan deficits since a relatively “young” age of 34 and, particularly, in the elderly are recommended.
- Techniques for Phenotyping the Gut Microbiota Metabolome
2019 Omics strategies have triggered a revolution in the understanding of the microorganisms that reside in our body, and their implications in health and disease. For diagnosis and therapeutics, metabolomic fingerprinting is the most powerful approach, since the metabolites represent the actual interplay between humans and microbes. Studying the metabolome requires several new high-throughput analytical techniques and innovative computational methodologies. Herein, we will focus on the metabolomics workflow for gut microbiota analysis, including sampling, laboratory procedures, and available analytical techniques, paying special attention to microbiota isolation and multiplatform complementarity. Finally, we will summarize some applications and implications of gut microbiota metabolites in biomarkers discovery and several therapeutic strategies, such as fecal microbiota transplantation and the usage of prebiotics and probiotics.
- Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic Bacterium.
2014-09-16 Titania (TiO2)-based nanocomposites subjected to light excitation are remarkably effective in eliciting microbial death. However, the mechanism by which these materials induce microbial death and the effects that they have on microbes are poorly understood. Here, we assess the low dose radical-mediated TiO2 photocatalytic action of such nanocomposites and evaluate the genome/proteome-wide expression profiles of Pseudomonas aeruginosa PAO1 cells after two minutes of intervention. The results indicate that the impact on the gene-wide flux distribution and metabolism is moderate in the analysed time span. Rather, the photocatalytic action triggers the decreased expression of a large array of genes/proteins specific for regulatory, signalling and growth functions in parallel with subsequent selective effects on ion homeostasis, coenzyme-independent respiration and cell wall structure. The present work provides the first solid foundation for the biocidal action of titania and may have an impact on the design of highly active photobiocidal nanomaterials.