Browsing by Author "Alves, Adyson H."
- Results Per Page
- Sort Options
- Lack of neutralization of 10-MDP primers by zirconia may affect the degree of conversion of dual-cure resin cement
2021-01-07 Objective: To assess the effects of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) included in experimental ceramic primers on the degree of conversion (DC) and microshear bond strength (μSBS) of a dual-cure resin cement, and on the acidity neutralization potential of zirconia (ZrO2) in comparison to hydroxyapatite (HAp). Methods: Experimental ceramic primers were formulated using 5 wt%, 10 wt%, 20 wt%, or 40 wt% 10-MDP as an acidic functional monomer and camphorquinone (CQ)/amine or 1-phenyl-1,2- propanedione (PPD) as a photoinitiator system. Clearfil Ceramic Primer (Kuraray Dental, Tokyo, Japan) was used as the commercial control. Micro- Raman spectroscopy was used to assess the DC of uncured and light-cured resin cements applied onto primer-treated ZrO2 surfaces. The μSBS and pH of primers were assayed in a universal testing machine and by a digital pH meter (Tec-3MP; Tecnal, Piracicaba, Brazil), respectively. Statistical analysis was performed by one-way analysis of variance (ANOVA) and Tukey’s test (p<0.05). Results: DC was not affected until a concentration of 10% 10-MDP in CQ primer and 5% 10-MDP in PPD primer was reached, when compared with the positive control (p>0.05). Groups 10-MDP 5% in CQ and PPD primers showed the highest μSBS compared with the positive control (p>0.05); however, higher concentrations of 10-MDP induced significant DC and μSBS reduction (p<0.05). HAp neutralized 10-MDP primers, but ZrO2 provided higher acidity to the primers’ pH. Conclusion: 10-MDP monomer should be used in low concentrations in ZrO2 primers to avoid reduction of the polymerization and bond strength of resin cement.
- Physicochemical properties of experimental resin-based materials containing fluoridated calcium phosphates
2020-10-15 The aim of this study was to evaluate the physicochemical properties of experimental adhesives containing tailored fluoridated calcium phosphate fillers. Five experimental resins were formulated, one contained no calcium phosphate filler (Control) and the other four resins contained 40 wt% of calcium phosphate fillers doped with increasing concentrations of fluoride: adhesives CaP (no fluoride), CaP-2F (2 wt% F), CaP-4F (4 wt% F), and CaP-8F (8 wt% F). Resin specimens were prepared for a three-point bending test to evaluate the elastic modulus (E) and flexural strength (FS) at 24 h and after 2 months of water storage. Disk-shaped specimens were prepared to analyze the water sorption (Ws) according to ISO 4049. The degree of conversion (DC) of the tested resins was also assessed through FTIR. Statistical analysis was performed with ANOVA and Tukey’s test (p < 0.05). The addition of F-CaP particles at 0 and 2 wt% fluoride had no effect on the DC (p > 0.05) compared to the filler-free resin. However, these same experimental resins showed the highest E after water storage. All resins had a significant reduction of the FS after water storage (p < 0.001), but at a lower percentage rate for those experimental resins containing fluoride-free CaP or fluoride-doped CaP- 2F. These latter experimental resins achieved similar Ws to control the filler-free resin. Conversely, those resins containing 4 or 8 wt% fluoride-doped CaP had a significant Ws increase (p < 0.05). In conclusion, the incorporation of calcium phosphate particles without fluoride or with 2 wt% fluoride may represent a promising strategy to generate adhesive resins with specific physicochemical properties. Fluoride incorporation in CaP fillers for dental resin adhesive should be performed at low concentrations in order to avoid excessive water sorption and a decrease of polymerization.