Mendes de Jesus Sánchez, CatarinaRomero Sánchez, Pantaleón DavidProducción Científica UCH 2021UCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas2022-04-022022-04-022021-01-21Mendes de Jesus S., C. & Romero, P. D. (2021). Invariants of stable maps between closed orientable surfaces. Mathematics, vol. 9, i. 3 (21 jan.), art. 215. DOI: http://dx.doi.org/10.3390/math90302152227-7390 (Electrónico)http://hdl.handle.net/10637/13598Este artículo se encuentra disponible en la siguiente URL: https://www.mdpi.com/2227-7390/9/3/215In this paper, we will consider the problem of constructing stable maps between two closed orientable surfaces M and N with a given branch set of curves immersed on N. We will study, from a global point of view, the behavior of its families in different isotopies classes on the space of smooth maps. The main goal is to obtain different relationships between invariants. We will provide a new proof of Quine’s Theorem.application/pdfenopen accessSurfaces.Superficies (Matemáticas)Invariantes.Curves on surfaces.Invariants.Curvas sobre superficies.Invariants of stable maps between closed orientable surfacesArtículohttps://doi.org/10.3390/math9030215https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es