Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10637/15941

Extracts from cultures of Pseudomonas fluorescens induce defensive patterns of gene expression and enzyme activity while depressing visible injury and reactive oxygen species in Arabidopsis thaliana challenged with pathogenic Pseudomonas syringae


Vista previa

Ver/Abrir:
 Extracts_Martin_et_al_AoBP_2019.pdf

450,22 kB
Adobe PDF
Título : Extracts from cultures of Pseudomonas fluorescens induce defensive patterns of gene expression and enzyme activity while depressing visible injury and reactive oxygen species in Arabidopsis thaliana challenged with pathogenic Pseudomonas syringae
Autor : Martín Rivilla, Helena
García Villaraco, Ana
Ramos Solano, Beatriz
Gutiérrez Mañero, Francisco Javier
Lucas García, José Antonio
Materias: Metabolic elicitorsOxidative stressPseudomonas fluorescens
Editorial : Oxford Academic
Citación : Martin-Rivilla H, Garcia-Villaraco A, Ramos-Solano B, Gutierrez-Mañero FJ, Lucas JA. 2019. Extracts from cultures of Pseudomonas fluorescens induce defensive patterns of gene expression and enzyme activity while depressing visible injury and reactive oxygen species in Arabidopsis thaliana challenged with pathogenic Pseudomonas syringae. AoB PLANTS 11: plz049; doi: 10.1093/aobpla/plz049
Resumen : We evaluated the ability of metabolic elicitors extracted from Pseudomonas fluorescens N21.4 to induce systemic resistance (ISR) in Arabidopsis thaliana against the pathogen Pseudomonas syringae DC3000. Metabolic elicitors were obtained from bacteria free culture medium with n-hexane, ethyl acetate and n-butanol in three consecutive extractions. Each extract showed plant protection activity. The n-hexane fraction was the most effective and was used to study the signal transduction pathways involved by evaluating expression of marker genes of the salicylic acid (SA) signalling pathway (NPR1, PR1, ICS and PR2) and the jasmonic acid/ethylene (JA/ET) signalling pathway (PDF1, MYC2, LOX2 and PR3). In addition, the level of oxidative stress was tested by determining the activity of enzymes related to the ascorbate-glutathione cycle. N-hexane extracts stimulated both pathways based on overexpression of ICS, PR1, PR2, PDF1 and LOX2 genes. In addition, activity of the pathogenesis-related proteins glucanase (PR2) and chitinase (PR3), lipoxygenase and polyphenol oxidase was enhanced together with an increased capacity to remove reactive oxygen species (ROS). This was associated with less oxidative stress as indicated by a decrease in malondialdehyde (MDA), suggesting a causative link between defensive metabolism against P. syringae and ROS scavenging.
URI : http://hdl.handle.net/10637/15941
Derechos: http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
Open Access
ISSN : 2041-2851
Fecha de publicación : jul-2019
Centro : Universidad San Pablo-CEU
Aparece en las colecciones: Facultad de Farmacia





Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.