Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10637/15704
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.otherUniversidad San Pablo-CEU. Escuela Politécnica Superior-
dc.creatorAhmad, Feezan-
dc.creatorTang, Xiao-Wei-
dc.creatorAhmad, Mahmood-
dc.creatorGonzález Lezcano, Roberto Alonso.-
dc.creatorMajdi, Ali-
dc.creatorMoafak Arbili, Mohamed-
dc.date.accessioned2024-04-08T18:12:54Z-
dc.date.available2024-04-08T18:12:54Z-
dc.date.issued2023-11-29-
dc.identifier.citationFeezan Ahmad, Xiao-Wei Tang, Mahmood Ahmad, Roberto Alonso González-Lezcano, Ali Majdi, Mohamed Moafak Arbili. Stability risk assessment of slopes using logistic model tree based on updated case histories[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 21229-21245. doi: 10.3934/mbe.2023939es_ES
dc.identifier.issn1551-0018-
dc.identifier.urihttp://hdl.handle.net/10637/15704-
dc.description.abstractA new logistic model tree (LMT) model is developed to predict slope stability status based on an updated database including 627 slope stability cases with input parameters of unit weight, cohesion, angle of internal friction, slope angle, slope height and pore pressure ratio. The performance of the LMT model was assessed using statistical metrics, including accuracy (Acc), Matthews correlation coefficient (Mcc), area under the receiver operating characteristic curve (AUC) and F-score. The analysis of the Acc together with Mcc, AUC and F-score values for the slope stability suggests that the proposed LMT achieved better prediction results (Acc = 85.6%, Mcc = 0.713, AUC = 0.907, F-score for stable state = 0.967 and F-score for failed state = 0.923) as compared to other methods previously employed in the literature. Two case studies with ten slope stability events were used to verify the proposed LMT. It was found that the prediction results are completely consistent with the actual situation at the site. Finally, risk analysis was carried out, and the result also agrees with the actual conditions. Such probability results can be incorporated into risk analysis with the corresponding failure cost assessment later.en_EN
dc.formatapplication/pdf-
dc.language.isoen-
dc.publisherAIMS Press-
dc.relation.ispartofMathematical Biosciences and Engineering-
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.es-
dc.subjectLogistic model treeen_EN
dc.subjectMachine learningen_EN
dc.subjectSlope stabilityen_EN
dc.subjectRisk analysisen_EN
dc.subjectPerformance metricsen_EN
dc.titleStability risk assessment of slopes using logistic model tree based on updated case historiesen_EN
dc.typeArtículo-
dc.identifier.doi10.3934/mbe.2023939 Previous ArticleNext Article-
dc.centroUniversidad San Pablo-CEU-
Aparece en las colecciones: Escuela de Politécnica Superior




Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.