Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10637/15466

Mosquito alert: leveraging citizen science to create a GBIF mosquito occurrence dataset


Vista previa

Ver/Abrir:
 Mosquito_Juznic_GIGABYTE_2022.pdf
387,21 kB
Adobe PDF
Título : Mosquito alert: leveraging citizen science to create a GBIF mosquito occurrence dataset
Autor : Juznic Zonta, Zivko
Sanpera Calbet, Isis
Eritja, Roger
Palmer, John R. B.
Escobar, Agustí
Garriga, Joan
Alarcón Elbal, Pedro María
Materias: CulícidosMosquitoesCiencia abiertaOpen scienceBiodiversidadBiodiversityEcologíaEcologyTaxonomía animalAnimal taxonomy
Editorial : GigaScience
Citación : Južnič-Zonta, Z., Sanpera-Calbet, I., Eritja, R., Palmer, J.R.B., Escobar, A., Garriga, J., Oltra, A., Richter-Boix, A., Schaffner, F., Torre, A. della, Miranda, M.A., Koopmans, M., Barzon, L., Ferre, F.B., Mosquito Alert Digital Entomology Network & Mosquito Alert Community. (2022). Mosquito alert: leveraging citizen science to create a GBIF mosquito occurrence dataset. Gigabyte. DOI: https://doi.org/10.46471/gigabyte.54
Resumen : The Mosquito Alert dataset includes occurrence records of adult mosquitoes collected worldwide in 2014–2020 through Mosquito Alert, a citizen science system for investigating and managing disease-carrying mosquitoes. Records are linked to citizen science-submitted photographs and validated by entomologists to determine the presence of five targeted European mosquito vectors: Aedes albopictus, Ae. aegypti, Ae. japonicus, Ae. koreicus, and Culex pipiens. Most records are from Spain, reflecting Spanish national and regional funding, but since autumn 2020 substantial records from other European countries are included, thanks to volunteer entomologists coordinated by the AIM-COST Action, and to technological developments to increase scalability. Among other applications, the Mosquito Alert dataset will help develop citizen science-based early warning systems for mosquito-borne disease risk. It can also be reused for modelling vector exposure risk, or to train machine-learning detection and classification routines on the linked images, to assist with data validation and establishing automated alert systems.
URI : http://hdl.handle.net/10637/15466
Derechos: http://creativecommons.org/licenses/by/4.0/deed.es
Open Access
ISSN : 2709-4715 (Electrónico)
Fecha de publicación : 30-may-2022
Centro : Universidad Cardenal Herrera-CEU
Aparece en las colecciones: Dpto. Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos





Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.