Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10637/14842
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.otherUCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas-
dc.creatorRenau Martínez, Jordi-
dc.creatorTejada, Diego-
dc.creatorGarcía Peñas, Víctor-
dc.creatorLópez, Eduardo-
dc.creatorDoménech Ballester, Luis-
dc.creatorLozano Fantoba, Antonio-
dc.creatorBarreras Toledo, Félix Manuel-
dc.date.accessioned2024-01-12T15:39:05Z-
dc.date.available2024-01-12T15:39:05Z-
dc.date.issued2024-02-07-
dc.identifier.citationRenau, J., Tejada, D., García, V., López, E., Domenech, L., Lozano, A. & Barreras, F. (2024). Design, development, integration and evaluation of hybrid fuel cell power systems for an unmanned water surface vehicle. International Journal of Hydrogen Energy, vol. 54 (feb.), pp. 1273-1285. DOI: https://doi.org/10.1016/j.ijhydene.2023.12.043es_ES
dc.identifier.issn0360-3199-
dc.identifier.urihttp://hdl.handle.net/10637/14842-
dc.description.abstractWhen fuel cells are used to power mobile applications, such a vehicles, hybridization with batteries is normally required. Depending on the electronic coupling between the energy sources the power plants can have passive or active configurations. Hybrid fuel cell-battery power plants with active power control flow have some advantages. For example, they can decrease the total energy losses, while improving the fuel cell performance, extending its lifetime. Power plants with DC/DC converters show low specific energy ratios, but with a superior energy management. In the present research, the hybrid power plant for an unmanned aquatic surface vehicle (USV) based on a PEM fuel cell and a Li-ion battery is developed. Active (with DC–DC converters) or passive architectures are analyzed by numerical simulations and experimental tests. Good results are obtained for the active power plant, where the peak power demands are managed by the battery pack while the fuel cell power remains constant thanks to the DC-converter control. The study shows that a simple control algorithm (no optimal) can help to extend the USV autonomy above 12 h in calm waters with a specific energy of 85.6 W h kg-1.es_ES
dc.description.sponsorshipAcuerdo Transformativo – 2023-
dc.language.isoenes_ES
dc.publisherElsevieres_ES
dc.relationEste artículo de investigación ha sido financiado por el Ministerio de Ciencia, Innovación y Universidades del Gobierno de España bajo el proyecto DOVELAR (RTI2018-096001-B-C33).-
dc.relationUCH. Financiación Nacional-
dc.relation.ispartofInternational Journal of Hydrogen Energy, vol. 54 (feb.)-
dc.rightsOpen Access-
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.es-
dc.subjectHidrógeno-
dc.subjectHydrogen-
dc.subjectEnergy resources-
dc.subjectRecursos energéticos-
dc.subjectFuente de energía renovable-
dc.subjectRenewable energy sources-
dc.titleDesign, development, integration and evaluation of hybrid fuel cell power systems for an unmanned water surface vehiclees_ES
dc.typeArtículoes_ES
dc.identifier.doihttps://doi.org/10.1016/j.ijhydene.2023.12.043-
dc.relation.projectIDRTI2018-096001-B-C33-
dc.centroUniversidad Cardenal Herrera-CEU-
Aparece en las colecciones: Dpto. Matemáticas, Física y Ciencias Tecnológicas




Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.