Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10637/12454
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.otherUCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas-
dc.contributor.otherUCH. Departamento de Enfermería y Fisioterapia-
dc.contributor.otherProducción Científica UCH 2020-
dc.creatorMartínez Gramage, Javier-
dc.creatorPardo Albiach, Juan-
dc.creatorNacher Moltó, Iván-
dc.creatorAmer Cuenca, Juan José-
dc.creatorHuesa Moreno, Vanessa-
dc.creatorSegura Ortí, Eva-
dc.date2020-
dc.date.accessioned2021-04-21T04:00:25Z-
dc.date.available2021-04-21T04:00:25Z-
dc.date.issued2020-11-09-
dc.identifier.citationMartínez Gramage, J., Pardo Albiach, J., Nacher Moltó, I., Amer Cuenca, J.J., Huesa Moreno, V. & Segura Ortí, E. (2020). A Random Forest Machine Learning Framework to Reduce Running Injuries in Young Triathletes. Sensors, vol. 20, i. 21 (09 nov.), art. 6388. DOI: https://doi.org/10.3390/s20216388-
dc.identifier.issn1424-8220 (Electrónico).-
dc.identifier.urihttp://hdl.handle.net/10637/12454-
dc.descriptionEste artículo se encuentra disponible en la siguiente URL: https://www.mdpi.com/1424-8220/20/21/6388/htm-
dc.descriptionEste artículo pertenece la número especial "Wearable Sensors & Gait".-
dc.description.abstractBackground: The running segment of a triathlon produces 70% of the lower limb injuries. Previous research has shown a clear association between kinematic patterns and specific injuries during running. Methods: After completing a seven-month gait retraining program, a questionnaire was used to assess 19 triathletes for the incidence of injuries. They were also biomechanically analyzed at the beginning and end of the program while running at a speed of 90% of their maximum aerobic speed (MAS) using surface sensor dynamic electromyography and kinematic analysis. We used classification tree (random forest) techniques from the field of artificial intelligence to identify linear and non-linear relationships between di erent biomechanical patterns and injuries to identify which styles best prevent injuries. Results: Fewer injuries occurred after completing the program, with athletes showing less pelvic fall and greater activation in gluteus medius during the first phase of the float phase, with increased trunk extension, knee flexion, and decreased ankle dorsiflexion during the initial contact with the ground. Conclusions: The triathletes who had su ered the most injuries ran with increased pelvic drop and less activation in gluteus medius during the first phase of the float phase. Contralateral pelvic drop seems to be an important variable in the incidence of injuries in young triathletes.-
dc.formatapplication/pdf-
dc.language.isoes-
dc.language.isoen-
dc.publisherMDPI-
dc.relation.ispartofSensors, vol. 20, n. 21.-
dc.rightshttp://creativecommons.org/licenses/by/4.0/deed.es-
dc.subjectPelvis - Wounds and injuries - Prevention.-
dc.subjectFisioterapia deportiva.-
dc.subjectSports physical therapy.-
dc.subjectBiomecánica.-
dc.subjectPelvis - Mechanical properties.-
dc.subjectCarreras (Atletismo) - Accidentes y lesiones - Prevención.-
dc.subjectRunning races - Wounds and injuries - Prevention.-
dc.subjectPelvis - Heridas y lesiones - Prevención.-
dc.subjectPelvis - Propiedades mecánicas.-
dc.subjectBiomechanics.-
dc.titleA random forest machine learning framework to reduce running injuries in young triathletes-
dc.typeArtículo-
dc.identifier.doihttps://doi.org/10.3390/s20216388-
dc.centroUniversidad Cardenal Herrera-CEU-
Aparece en las colecciones: Dpto. Enfermería y Fisioterapia




Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.