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ABSTRACT 28 

Gestational Diabetes (GDM) is causing severe short- and long-term complications for mother, 29 

fetus or neonate. As yet, the metabolic alterations that are specific for the development of GDM 30 

have not been fully determined, which also precludes the early diagnosis and prognosis of this 31 

pathology. In this pilot study, we determine the metabolic fingerprint, using a multiplatform LC-32 

QTOF/MS, GC-Q/MS and CE-TOF/MS system, of plasma and urine samples of 20 women with 33 

GDM and 20 with normal glucose tolerance in the second trimester of pregnancy. Plasma 34 

fingerprints allowed for the discrimination of GDM pregnant women from controls. In particular, 35 

lysoglycerophospholipids showed a close association with the glycemic state of the women. In 36 

addition, we identified some metabolites with a strong discriminative power, such as LPE(20:1), 37 

(20:2), (22:4); LPC(18:2), (20:4), (20:5); LPI(18:2), (20:4); LPS(20:0) and LPA(18:2), as well as 38 

taurine-bile acids and long-chain polyunsaturated fatty acids derivatives. Finally, we provide 39 

evidence for the implication of these compounds in metabolic routes, indicative of low-grade 40 

inflammation and altered redox-balance, that may be related with the specific pathophysiological 41 

context of the genesis of GDM. This highlights their potential use as prognostic markers for the 42 

identification of women at risk to develop severe glucose intolerance during pregnancy. 43 

 44 

Biological Significance: 45 

Gestational Diabetes Mellitus (GDM) is increasing worldwide and, although diabetes usually 46 

remits after pregnancy, women with GDM have a high risk of developing postpartum type 2-47 

diabetes, particularly when accompanied by obesity. Therefore, understanding the 48 
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pathophysiology of GDM, as well as the identification of potentially modifiable risk factors and 49 

early diagnostic markers for GDM are relevant issues. In the present study, we devised a 50 

multiplatform metabolic fingerprinting approach to obtain a comprehensive picture of the early 51 

metabolic alternations that occur in GDM, and may reflect on the specific pathophysiological 52 

context of the disease. Future studies at later stages of gestation will allow us to validate the 53 

discriminant power of the identified metabolites.  54 

55 
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Gestational Diabetes Mellitus (GDM), defined as “any degree of glucose intolerance with onset 56 

or first recognition during pregnancy” [1], is increasing worldwide and, depending on the 57 

population analyzed and on the diagnostic criteria used, its prevalence ranges from 3%-14% of 58 

all pregnancies. Despite advances in diagnosis and good maternal control [2], GDM is frequently 59 

causing short- and long-term health complications for the mother, the fetus and the neonate [3]. 60 

Furthermore, although diabetes usually remits after pregnancy, women with GDM have a high 61 

risk of developing postpartum type 2-diabetes, particularly when accompanied by obesity [4].  62 

There is lack of international uniformity regarding the ascertainment and diagnosis of GDM. 63 

Therefore, understanding the pathophysiology of GDM, as well as the identification of 64 

potentially modifiable risk factors and early diagnostic markers for GDM are relevant issues. 65 

Contemporary “omics” approaches, in particular metabolomics, provide deeper insights in the 66 

etiopathogenesis and discovery of biomarkers of diseases. A unique and disease-specific 67 

metabolite pattern or “fingerprint” allows for deciphering biological processes, and for the 68 

identification of compounds with potential diagnostic or predictive power. A growing number of 69 

metabolomics studies aimed at uncovering the metabolic signature of type 2-diabetes [5, 6], 70 

focusing on potential biomarkers of altered glucose tolerance and onset of insulin resistance, 71 

such as branched-chain amino acids, acylcarnitines, choline-containing phospholipids and 2-72 

hydroxybutyrate [7].  73 

In the present study, we devised a multiplatform metabolic fingerprinting approach to obtain a 74 

comprehensive picture of the early metabolic alternations that occur in GDM, and to eventually 75 

identify potential biomarkers that predict the risk of the GDM pregnant women to develop severe 76 
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glucose intolerance that will be validated in future studies at later stages of gestation and on an 77 

independent cohort of women. 78 

 79 

RESEARCH DESIGN AND METHODS 80 

Study population  81 

GDM screening was done routinely at 22-28 weeks of gestation after overnight fasting by an oral 82 

glucose tolerance test (OGTT). According to WHO-1998 criteria, GDM was defined as glucose 83 

level 140 mg/dl (7.8 mmol/l) after 2-h 75-g OGTT. Women known to have previous diabetes 84 

mellitus or other complications were excluded from the study. Finally, twenty caucasian women 85 

with GDM and 20 healthy caucasian pregnant women with normal glucose tolerance were 86 

matched according to week of gestation and age (22-37 years). At the day of the OGTT, venous 87 

fasting blood samples were drawn into EDTA-containing tubes and overnight urine was 88 

collected. Samples were stored at –80ºC until analysis. The study was carried out in accordance 89 

with the permission of the Bioethical Commission of the Medical University of Bialystok, 90 

Poland. Written informed consent was obtained from each participant in the study. 91 

 92 

Biochemical analysis and indices of insulin resistance 93 

Plasma glucose, cholesterol, LDL/HDL-cholesterol, triacylglycerols and C-reactive protein 94 

(CRP) were measured in an autoanalyzer (Cobas C111 Roche Autoanalyzer, Hoffmann-LaRoche 95 

Ltd., Basel Switzerland). Blood HbA1c was analyzed by the D-10TM Hemoglobin Testing 96 

System (Bio-Rad, USA), C-peptide by an ELISA kit (Biosource International, Inc., Belgium), 97 
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and insulin with an INS-IRMA-RIA kit (DIAsource ImmunoAssays S.A., Belgium). HOMA-IR 98 

(Homeostatic Model Assessment) [8] and QUICKI (Quantitative Insulin Sensitivity Check 99 

Index) [9] indices were calculated with fasting glucose (mg/dL) and insulin (U/mL) as 100 

described. The area under the curve (AUC-G) for glucose during the OGTT was determined by 101 

the trapezoidal method with Prism 6.0 software. 102 

 103 

Metabolic fingerprinting 104 

Standards for GC-MS and organic solvents were from Sigma-Aldrich (Madrid, Spain); standards 105 

and reference mass solutions for LC-MS and CE-MS were from Agilent Technologies (Madrid, 106 

Spain).  107 

Sample preparation was done according to standard protocols [10-12]. Briefly, for LC-MS 108 

analysis, proteins were precipitated by mixing 1 volume of plasma with 3 volumes of 109 

methanol/ethanol (1:1); for GC-MS analysis, protein precipitation was performed by treatment 110 

with cold acetonitrile (1:3), followed by methoximation with O-methoxyamine hydrochloride 111 

(15 mg/mL) in pyridine, and silylation with N,O-bis(trimethylsilyl)trifluoroacetamide in 1% 112 

trimethylchlorosilane. Finally, urine samples for CE-MS analysis were prepared by incubating 1 113 

volume of urine with 4 volumes of 0.125 M formic acid. Quality control (QC) samples were 114 

prepared by pooling equal volumes of each sample and were injected every 6 samples injections 115 

and at the beginning/end of each analysis [13].  116 

 117 

Fingerprinting of plasma with LC-QTOF/MS. A UHPLC system (Agilent 1290 Infinity LC 118 

System), equipped with a degasser, two binary pumps, and a thermostated autosampler coupled 119 

with Q-TOF LC/MS (6550 iFunnel) system (Agilent), was used in the ESI+ and ESI- mode to 120 

increase the number of detected metabolite ions as we previously described [10]. Briefly, 0.5 µL 121 
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of extracted plasma samples were injected into a thermostated (60ºC) RP Zorbax Extend C18 122 

column (2.1 × 50 mm, 1.8 μm; Agilent Technologies). The flow rate was 0.6 mL/min with 123 

solvent A (water with 0.1% formic acid), and solvent B (acetonitrile with 0.1% formic acid). The 124 

chromatographic gradient started at 5% phase B during the first minute, followed by and increase 125 

of phase B to 80% (1-7 min) and 100% (7-11.5 min); the system was re-equilibrated by reverting 126 

the gradient to 5% phase B (12-15 min). The system was operated in full scan mode from 50-127 

1000 m/z for positive and 50-1100 m/z for negative mode. Capillary voltage was set to 3 kV for 128 

positive and negative ionization modes; the drying gas flow rate was 12 L/min at 250 ºC and gas 129 

nebulizer at 52 psi; fragmentor voltage was 175V for positive and 250V for negative ionization 130 

mode; skimmer and octopole radio frequency voltage (OCT RF Vpp) were set to 65V and 750V, 131 

respectively. Data were collected in the centroid mode at a scan rate of 1.0 spectrum per second. 132 

Accurate mass measurements were obtained by means of an automated Calibrant Delivery 133 

System (CDS), using a Dual Agilent Jet Stream Electrospray Ionization (Dual AJS ESI) source 134 

that continuously introduces a calibrant solution with reference masses at m/z 121.0509 135 

(C5H4N4) and m/z 922.0098 (C18H18O6N3P3F24) in positive ionization mode or m/z 112.9856 8 136 

(C2O2F3(NH4)) and 1033.9881 (C18H18O6N3P3F24) in negative ionization mode. Samples were 137 

analyzed in separate runs (positive and negative ionization mode), in a randomized order. 138 

 139 

Fingerprinting of plasma with GC-Q-MS. A GC system (Agilent Technologies 7890A), 140 

equipped with an autosampler (Agilent 7693) and interfaced to an inert mass spectrometer with 141 

triple-Axis detector (5975C, Agilent), was used for fingerprinting as we have previously 142 

described [11, 14]. Briefly, 2 µL of the derivatized sample were injected in a GC-Column DB5-143 
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MS (30 m length, 0.25 mm, 0.25 µm film 95% dimethyl/ 5% diphenylpolysiloxane) couple to a 144 

pre-column (10 m J&W integrated with Agilent 122-5532G). The injector port was held at 250 145 

ºC, and the helium carrier gas flow rate was set at 1.0 mL/min. The split ratio was 1:10. The 146 

temperature gradient was programmed as follows: the initial oven temperature was set to 60 ºC 147 

(held for 1 min), increased to 325 ºC at a rate of 10 ºC/min; the system was allowed to cool down 148 

for 10 min before the next injection. The detector transfer line, the filament source and the 149 

quadrupole temperature were set to 280 ºC, 230 ºC and 150 ºC, respectively. MS detection was 150 

performed in electron impact (EI) mode at -70 eV. The mass spectrometer was operated in scan 151 

mode over a mass range of 50-600 m/z at a rate of 2.7 scan/s. 152 

 153 

Fingerprinting of urine with CE-TOF/MS . An Agilent 7100 (CE) system, coupled to a TOF 154 

Mass Spectrometer (6224 Agilent), was used for samples analysis as published previously [12]. 155 

In brief, a fused-silica capillary (Agilent Technologies; total length, 96 cm; i.d., 50 μm) was pre-156 

conditioned with 1M NaOH for 30 min, followed by MilliQ® water for 30 min and background 157 

electrolyte - BGE (0.8 M formic acid in 10% methanol) for 30 min. Before each analysis, the 158 

capillary was flushed for 5 min (950 mbar pressure) with BGE. The MS was operated in positive 159 

polarity, with a full scan from 80 to 1000 m/z at a rate of 1.4 scan/s. Drying gas was set to 10 160 

L/min, nebulizer to 10 psi, voltage to 3.5 kV, fragmentor to 100V, gas temperature to 200 ºC  161 

and skimmer to 65V.  The sheath liquid composition was methanol/water (1/1, v/v), containing 162 

1.0 mmol/L formic acid with two references masses (121.0509 – purine (C5H4N4) and 922.0098 163 

– HP-921 (C18H18O6N3P3F24)), which allows for correction and provides more accurate mass 164 

determination. Flow rate was 0.6 mL/min and split was set to 1/100. Samples were injected at 50 165 

mbar for 17 s. After each injection, along with the samples, BGE was co-injected for 10 s at 100 166 
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mbar pressure to improve repeatability. Separations were performed at a pressure of 25 mbar and 167 

a voltage of +30 kV; current under these conditions was 25 µA. 168 

 169 

Data acquisition and statistical analysis 170 

To provide quality assurance of results, LC-MS, GC-MC, CE-MS data treatment was performed 171 

as described previously [15]. Briefly, LC-MS and CE-MS raw data were cleaned from 172 

background noises and unrelated ions by the Molecular Feature Extraction tool (MassHunter 173 

Qualitative Analysis Software; Agilent). GC-MS data were analysed using the Agilent 174 

ChemStation Software (G1701EA E.02.00.493, Agilent). AMDIS 2.69 software from NIST 175 

(U.S. National Institute of Standards and Technology) was used for mass spectral deconvolution 176 

to identify co-eluted compounds according to their retention indices and retention times. GC-MS 177 

and CE-MS data were normalized according to C18:0 methyl ester and creatinine intensity, 178 

respectively. Primary data treatment (filtering and alignment) was performed with MPP (Mass 179 

Profiler Professional) B.12.1 software (Agilent). Variation of compound responses in QC-180 

samples was expressed as CV. Metabolites detected in <50% of all QC-samples and with a CV 181 

>30% were removed to asure repeatability.  182 

Univariate statistical analysis assuming equal (t-test) or unequal variance (Welch’s t-test) and 183 

hierarchial heat map clustering analysis were performed with MPP B.12.1 software. Benjamin 184 

Hochberg FDR was applied for P value correction. Multivariate (unsupervised and supervised) 185 

analysis was performed using SIMCA-P+ 12.0 (Umetrics, Umea, Sweden). Associations 186 

between variables were tested by Spearman correlation coefficients (rs) using Prism 6.0 software. 187 

Assessment of the diagnostic performance of the metabolites was made using the receiver 188 
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operating characteristic (ROC) curves by plotting the sensitivity against the corresponding false-189 

positive rate (100-specificity), with the Prism 6.0 software. A test with perfect discrimination 190 

power yields a ROC curve that passes through the upper left corner with an AUC of one (100% 191 

sensitivity and 100% specificity). Thus, the closer the ROC-area to one, the higher the 192 

discriminant power of the metabolite. To construct the ROC curves, GDM was defined 193 

according to WHO-1998 criteria, as glucose level 140 mg/dl (7.8 mmol/l) after 2-h 75-g OGTT. 194 

To establish potential cutoff values for each metabolite, we determined the optimal decision 195 

point from the ROC curve, assigning equal weights to the sensitivity and specificity of the test.. 196 

Then, best sensitivity, specificity and likelyhood ratio for the selected cut-off of each parameter 197 

were obtained. 198 

 199 

Compound identification 200 

Identification of compounds (LC-MS and CE-MS) that were significant in class separation was 201 

performed by searching accurate masses against online databases (METLIN, HMDB, KEGG, 202 

LIPIDMAPS), and confirmed by LC-MS/MS. For CE-MS, compound identification was 203 

confirmed by using available standards. Compound identification by GC-MS was performed 204 

with the target metabolite Fiehn GC/MS Metabolomics RTL library (G1676AA, Agilent), the 205 

CEMBIO-library and the NIST mass spectra library 2.0, using the ChemStation software and 206 

native PBM (Probability-Based Matching) algorithm (G1701EA E.02.00.493, Agilent).  207 

 208 

Experiment validation 209 



11 

 

Models obtained by multivariate calculations were validated by a cross-validation tool [16], 210 

using the “leaving one third out” approach. Prediction of excluded samples was reiterated until 211 

all samples were predicted at least once.  212 

 213 

RESULTS 214 

Study participants 215 

There was no difference in age, parity or blood pressure between the women in the different 216 

groups (Table 1). BMI before gestation (BMIo) was similar in control and GDM women, despite 217 

a significantly higher BMI in 2nd trimester (BMI-2t). As expected, women who were classified as 218 

GDM according to WHO-criteria, had significantly higher fasting glucose, HbA1c, 219 

triacylglycerides and cholesterol than controls; HDL and LDL-cholesterol, basal insulin, C-220 

peptide and CRP levels did not differ. During the OGTT, glucose levels were significantly higher 221 

at one and 2 hours in the women classified as GDM. The AUC-G was higher in the GDM 222 

women than in controls; there were no significant differences in HOMA-IR and QUICKI. 223 

Correlation analysis shows that there was no association between the body weight gain (BMI-2t 224 

minus BMIo) and various measures of glycemic control and insulin resistance. We observed that 225 

both, BMIo and BMI-2t, correlated with glycemic condition (rs for correlation with BMI-2t were 226 

0.368, 0.424, 0.355, 0.485 and −0.455 for basal glucose, AUC-G, insulin, HOMA-IR and 227 

QUICKI, respectively; P<0.05 for all correlations). Significant correlations were also observed 228 

for plasma triacylglycerides and basal or 2h-glucose, AUC-G, insulin, HOMA-IR and QUICKI 229 

(rs=0.412; 0.446; 0.460; 0.386; 0.453 and −0.501, respectively, P<0.01 for all correlations). No 230 

correlations were found between cholesterol (total, LDL, HDL) and basal or 2h-glucose, the 231 
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AUC-G, HOMA-IR and QUICKI indices (data not shown). 232 

 233 

Metabolic fingerprinting  234 

Metabolic fingerprinting allowed for the simultaneous detection of 114,431 potential compounds 235 

in plasma (LC: 114,347; GC: 84) and 7,428 in urine (CE). Data were filtered by choosing only 236 

those present in 100% (LC-MS/GC-MS) or 85% (CE-MS) of the samples in at least one of the 237 

groups. PCA analysis was used as an unsupervised method to get an overview and to detect 238 

trends within these data (626 in ESI+, 487 in ESI-; 48 in GC-MS; 127 in CE-MS). For LC-MS 239 

data, a clear separation can be observed between GDM and control groups, indicating metabolic 240 

changes inherent to GDM (Fig. 1A-B).  241 

Supervised Partial Least Squares Discriminant Analysis (PLS-DA) and Orthogonal PLS 242 

Discriminant Analysis (OPLS-DA) were used for modeling differences between the groups. 243 

Figure 1C-F highlights the quality of the models, allowing for a clear separation of samples. To 244 

estimate the predictive power of the analysis, a cross-validation of PLS-DA models was 245 

performed. In the models obtained with data from LC-MS, 94% (ESI+) and 100% (ESI-) of all 246 

excluded samples were classified correctly; in data from GC-MS and CE-MS, 79% and 85%, 247 

respectively, of excluded samples were classified correctly.  248 

Based on the compounds identified by LC-MS, we generated a metabolite heat map that revealed 249 

considerable differences between control and diabetic women (Fig. 2). Based on these findings, 250 

individual metabolites were compared, yielding statistical differences between control and GDM 251 

women in 571 metabolites in plasma (558 by LC-MS; 13 by GC-MS) and in 72 in urine (CE-252 
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MS). To ensure valid measurements, metabolites with very high analytical variance (determined 253 

as CV in QC) were excluded from further analysis. Finally, we identified 142 compounds in 254 

plasma that were statistically different between the groups, including 83 glycerophospholipids 255 

(51 lyso- and 32 phosphoglycerides), 9 sphingophospholipids (6 sphingomyelins, 2 256 

sphingoethanolamines, sphingosine phosphate); 25 fatty acids or derivatives (3 fatty acids, 20 257 

modified fatty acids, 1 eicosanoid, 1 ketone body); carnitine and 5 acylcarnitines; 7 amino acids 258 

or modified aminoacids; 4 bile acid and derivatives; pyruvic and fumaric acid; glycerol; 1 259 

vitamin; creatinine; 2-hydroxybutyrate, and 2 other compounds. In urine we identified 6 260 

metabolites, including 5 aminoacids or derivatives, and carnitine. The most pronounced GDM-261 

specific changes corresponded to lysophosphoglycerides, being the most abundant compounds 262 

lysophosphatidylcholines (LPC) with 16:0, 18:0, 18:1, 18:2, 18:3, 20:3, 20:4 and 20:5 acyl 263 

chains, followed by lysophosphatidylethanolamines (LPE) with 16:0, 18:0, 18:2, 20:0, 20:1, 264 

20:2, 22:4 and 22:6 chains.  265 

Table 2 shows metabolites that exhibited the highest significant differences between case and 266 

control groups. A complete list of metabolites identified by LC-MS that differed between 267 

experimental groups is available as supplementary material (Table 1S). Among the numerous 268 

glycerophospholipids that were determined, LPE(20:1), LPE(20:2), LPE(22:4), LPC(20:5), 269 

LPC(18:2), LPC(18:1), LPI(20:4), LPS(20:0), lysophosdatidic acid LPA(18:2), lipoxin C4, and 270 

the taurine-conjugates bile acids, trihydroxy-cholestanoyl taurine and taurolythocholic acid 271 

glucuronide showed a pronounced decrease with gestational diabetes, followed by other 272 

glycerophospholipids-species with poly-unsaturated fatty acids (PUFAs) as acyl moiety, 273 

glycerophosphocoline, long-chain PUFA (LC-PUFA) derivatives, such as araquidonate or 274 

docosahexaenoic acid methyl esters, conjugates bile acids, glycerophospholipids, 275 
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sphingophospholipids and acylcarnitines. Some metabolites showed an increase in the GDM 276 

group as compared to controls, including PE(38:6), PE(36:5), PC(38:1), PC(40:3), acetyl-277 

carnitine, linoleic acid, glycerol, 3-hydroxybutyrate, 2-hydroxybutyrate, and fumaric acid (Table 278 

2). In urine, we found a significant decrease of carnitine in GDM pregnant women, whereas 279 

hystidine, glutamine, phenylalanine, tryptophan and cystine were augmented in GDM.  280 

We further compared the fatty acid chain of the lysoglycerophospholipids affected by GDM, and 281 

found not only a decrease in the total amount of lysoglycerophospholipids, but also a 1.7 fold 282 

increase of the ratio of saturated versus unsaturated fatty acids in GDM women as compared to 283 

controls (Fig. 3). 284 

We performed a correlation analysis between all metabolites and diabetes outcome measures 285 

(fasting glucose, OGTT dynamics, HbA1c, HOMA-IR and QUICKI indices). Hundred and 286 

thirty-five metabolites correlated with the 2h-glucose (92 with P<0.001). Most metabolites 287 

correlated also with AUC-G, or HbA1c, but not with HOMA-IR or QUICKI. For simplicity, only 288 

those compounds that exhibited the highest Spearman coefficients (>+/-0.65) with 2-h glucose 289 

are shown (Table 3); correlations with fasting glucose, AUC-G, HbA1c and HOMA-IR are also 290 

included. Among metabolites that correlated with 2h-glucose, approximately 40% were 291 

lysoglycerophospholipids with a LC-PUFA moiety. The strongest associations were observed 292 

between 2h-glucose and arachidonic acid methylester (rs=-0.7984), LPS (21:0) (rs=0.7971), 293 

LPE(20:1) (rs=-0.7934), trihydroxy-cholanoyl taurine (rs=-0.7893), LPE(20:2) (rs=-0,7812), 294 

LPC(18:2) (rs=-0,7713), LPC(20:4) (rs=-0,7684), LPC(18:1) (rs=-0.7658), LPI(18:2) (rs=-295 

0.7649), LPS (20:0) (rs=-0.7633); LPI(20:4) (rs=-0.7576) and LPC(20:5) (rs=-0.7531). Other 296 

lysoglycerophospholipids and glycerophospholipids with PUFAs in their lipid moiety had also 297 

significant strengths of association. Linoleic acid and dodecamide showed positive correlation 298 
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with 2h-glucose (P<0.05), whereas cerebronic acid and other fatty acid derivatives showed a 299 

negative correlation with the various measures of the glycemic state.  300 

Other metabolites that were altered in GDM are acylcarnitines. Acetylcarnitine was increased by 301 

30% in the GDM women (P=0.005) as compared to nondiabetic women (P=0.005), whereas 302 

long-chain acylcarnitines were reduced by approximately 30% (P<0.01) in the GDM women. 303 

Interestingly, in GDM women carnitine was also reduced by 30% in plasma (P=0.0001) and by 304 

55% in urine (P=0.02). Correlation analyses revealed that plasma acetylcarnitine significantly 305 

correlated with 2h-glucose and AUC-G, whereas carnitine and LC-AC showed an inverse 306 

correlation with diabetes outcome measures; the highest correlation was found for 307 

steaorylcarnitine (-0.556, P=0.0002; −0.574, P=0.0001; −0.504, P=0.0009, for correlation with 308 

2h-glucose, AUC-G and HbA1c, respectively). The ratio of long-chain acylcarnitines/carnitine 309 

was similar between control and diabetic women (0.38), whereas the acetyl-carnitine/carnitine 310 

ratio was significantly augmented in GDM (0.31 and 0.56 in control and GDM, respectively). 311 

Finally, we performed a ROC analysis with metabolites that showed the best correlation with 312 

diabetes outcome. Only metabolites with a ROC area >0.94 are shown in Table 4. The analysis 313 

revealed a high discriminant power for 25 lysoglycerophospholipids, (21 contain a PUFA-chain), 314 

arachidonic (20:4) and docosahexaenoic (22:6) acid methylesters, and taurine-conjugated bile 315 

acids. Lipoxin was another lipid that exhibited a high discriminant power and also correlated 316 

with diabetic outcome. 317 

 318 

DISCUSSION 319 
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Despite several recommendations, there is no consensus approach to GDM diagnosis [17]. Thus, 320 

the availability of metabolites (or metabolic patterns) that predict GDM would be a major 321 

advance. Here, we performed a multiplatform metabolomic analysis of pregnant women at the 322 

2nd trimester in order to gain novel insights into the metabolic routes that are specifically altered 323 

in GDM and to identify potential biomarkers related to the glucose intolerance of the mother.  324 

Metabolomic research in pregnancy has focused mainly on preeclampsia and, to our knowledge, 325 

only a few studies have analyzed potential urine biomarkers for GDM [18]. Here, we confirm 326 

results of a study on a large multiethnic population, reporting that changes in the urinary 327 

excretion profile during and after pregnancy do not yield reliable biomarkers for GDM [19]. In 328 

fact, the only alteration we detected in urine samples from GDM women was an increase in the 329 

excretion of some aminoacids that did not correlate with glycemic control of the women. 330 

On the contrary, individual plasma metabolite fingerprints allowed for a clear discrimination of 331 

women with normal glucose tolerance and those with GDM. Identification of these metabolites 332 

revealed alterations of various metabolic pathways (for details see Fig. 4). Furthermore, we 333 

identified a set of metabolites, the variability of which correlated well with glycemic control and, 334 

thus, may provide insights into the metabolic disease etiology.  335 

 336 

PHOSPHOLIPIDS and BILE ACIDS 337 

Alterations of the levels and composition of plasma lysophospholipids were the most prominent 338 

changes that correlated well with the glycemic state of pregnant women. In particular, LPE(20:1) 339 

and (20:2) were affected by GDM and showed the highest discriminant power in the ROC 340 

analysis. Data about LPE as bioactive metabolites are scarce as compared to other phospholipids, 341 
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although its anti-inflammatory actions has been demonstrated in a mouse model of inflammation 342 

[20]. In support of a role for LPE as a biomarker for GDM, a non-targeted metabolomic study 343 

showed that LPE(16:1) allowed for the classification of subjects as insulin sensitive or insulin 344 

resistant [21].  345 

We also detected a decrease of various LPIs, in particular those with LC-PUFA(18:2, 20:4, 346 

22:6), and of LPC, PC and glycerophosphocholine. We identified LPC(18:2) as one of the 347 

metabolites that correlated best with the glycemic control of pregnant women and showed a high 348 

discriminative power. Others have reported a decrease in various LPC, PC and 349 

glycerophosphocoline in type 2-diabetes [22, 23] and, in various prospective population-based 350 

cohort studies, low levels of LPC(18:2) were shown to be predictive for dysglycemia and type 2-351 

diabetes [5, 6]. Interestingly, LPCs, such as LPC(18:2), have been found to induce glucose-352 

induced insulin secretion from pancreatic -cells, [5, 24, 25]. Furthermore, LPCs and LPSs were 353 

found to improve glycemia in both normal and type 1 and 2 diabetic mice through an enhanced 354 

glucose uptake [26, 27]. Thus, the observed decrease of lysoglycerophospholipids in GDM may 355 

be associated with glucose intolerance through altered glucose metabolism and -cell 356 

dysfunction. 357 

The observation that GDM was accompanied by a decrease in almost all species of 358 

lysoglycerophospholipids, points to an alteration of a common enzymatic activity. Interestingly, 359 

patients with IGT and type 2-diabetes were reported to have lower cPLA2 (cytosolic calcium-360 

dependent phospholipase-A2 isoform) transcription levels [6]. Since PUFAs are typically 361 

released from the sn-2 position of phospholipids, reduced cPLA2 activity could account for the 362 

decreased concentration of arachidonic acid [6] or other LC-PUFAs associated to type 2-diabetes 363 
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[22]. 364 

Glycerophospholipids with shorter chain length and saturated fatty acid residues may trigger 365 

development of type 2-diabetes, whereas those containing LC-PUFAs may offer protection [23, 366 

28] and attenuate inflammation induced by saturated acyl LPCs [29, 30], suggesting a role of 367 

lysoglycerophospholipids with LC-PUFAs as anti-inflammatory molecules. Interestingly, we 368 

found that the ratio of saturated/unsaturated acyl chains in LPCs, LPEs and LPIs was increased 369 

in GDM, indicating that lysoglycerophospholipids acyl moieties are determinant in their effect 370 

on glucose/lipid metabolism. These results, together with the decrease of lipoxin C4 levels in 371 

GDM, suggest that an unbalanced proportion of pro-inflammatory versus anti-inflammatory 372 

molecules is characteristic for GDM development. Interestingly, n-6 PUFA-derived lipoxins are 373 

potent anti-inflammatory compounds in various models of inflammation and, very recently, it 374 

has been proposed that they may act as endogenous anti-diabetic molecules [31]. 375 

In parallel with the decrease in lysoglycerophospholipids, we observed a decrease of 376 

plasmalogens in the GDM group. Various studies report a negative association of 377 

glycerophosphocholine-plasmalogens with obesity and insulin resistance [23, 32, 33]. As 378 

plasmalogens may act as serum antioxidants to prevent lipoprotein oxidation [33, 34], the 379 

decrease that we observed may suggest that low-grade lipid peroxidation occurs already at the 380 

beginning of GDM. In fact, in a previous study from our group [35], we found that, in the second 381 

trimester of gestation, non-obese women with GDM have already higher plasma concentrations 382 

of lipid and protein oxidation products than the control group. 383 

We also observed a reduction in various sphingomyelins, ceramide-ethanolamines, and 384 

sphingosine 1-phosphate, although no significant differences were found in ceramides between 385 
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control and GDM pregnant women. Sphingolipid metabolism is altered in diabetic conditions 386 

but, to date, most studies focused on ceramides [36] and only few examined the involvement of 387 

sphingomyelins, obtaining contradictory results. Some studies found a decrease of some 388 

sphingomyelins in diabetic patients [22, 23], whereas another study showed an increase [37]. 389 

Interestingly, whereas in the former studies, HbA1c was lower than 6.5%, the latter reported that 390 

HbA1c was 8.3%. In this context, we found that GDM pregnant women at this stage of gestation 391 

had a good glycemic control (HbA1c <5.5%). Since glucose activates sphingosine kinase, 392 

favouring the synthesis of sphingosine 1-phosphate [38], we propose that sphingolipid variations 393 

in diabetes are dependent of the metabolic control. Additionally, similar to other complex lipids, 394 

the effects of sphingolipids may differ dependent on the acyl moiety. In support of this, type 1-395 

diabetes has been associated with a decrease in nervonic acid (24:1), and sphingomyelins-and 396 

ceramides containing nervonic acid, whereas those with 20:0 and 24:0 acyl chains are increased 397 

[39]. Interestingly, we found a decrease in hydroxy-nervonic acid in GDM, and it has been 398 

reported that nervonic acid may have a preventive effect on human metabolic disorders [40]. As 399 

detailed in Fig. 4, the observed decrease in sphingomyelins may be related to the partitioning of 400 

palmitate to triacylglycerides in a competitive manner [41], favouring the hypertriglyceridemia 401 

observed in GDM. 402 

Taurine-conjugated bile acids also exhibited a strong inverse association with the glycemic state 403 

and a high discriminating power between control and GDM pregnant women. Novel functions of 404 

bile acid as metabolic integrators of energy homeostasis influencing glucose and lipid 405 

metabolism have been described, including lowering triacylglycerides, inhibiting 406 

gluconeogenesis, and improving insulin sensitivity [42]. In a metabolomic approach performed 407 

in the KORA F3 cohort study, it was reported that cholate, a primary bile acid, was detected 408 
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more frequently in control subjects than in diabetics, while the opposite was found for 409 

deoxycholate, a secondary bile acid [22]. Accordingly, it has been suggested that the bile acid 410 

profile is altered in diabetes [43]. Whether the decrease in taurine-conjugated bile acids and/or 411 

the altered bile acid pool composition reflect on a metabolic change that could be involved in 412 

other GDM metabolic alterations, such as hypertriglyceridemia, or if it is solely discriminating 413 

between glucose intolerance under fasting conditions, needs to be examinated.  414 

 415 

Other metabolites altered in GDM  416 

We found that acetyl-carnititine, the main acylcarnitine ester, was increased in GDM, whereas 417 

carnitine and long-chain acyl-carnitines were decreased. This increase in acetyl-carnitine in 418 

GDM seems to be a common metabolic event of glucose homeostasis alterations, including IGT 419 

[6] and diabetes [44]. In fact, increased expression of carnitine acetyl-CoA transferase, the 420 

enzyme responsible for acetyl-carnitine synthesis, in blood cells has been reported for IGT and 421 

type 2-diabetes [6].  422 

An altered fatty acid oxidation has been associated with insulin resistance and diabetes [45]. 423 

Interestingly, the early stages of diet-induced insulin resistance, when glucose intolerance but not 424 

insulin resistance is present, are characterized by increasing muscle fatty acid oxidation [46]. 425 

Furthermore, in different metabolomic studies it was found that medium-chain acylcarnitines 426 

decrease with impairing glucose tolerance [21]. The observed correlation of acetyl-carnitine and 427 

glucose intolerance tempts us to suggest that, at the beginning of gestation, an increased muscle 428 

fatty acid oxidation leads to a decrease in long-chain acylcarnitines, together with a concomitant 429 

increase of acetyl-CoA (Fig. 4). In fact, we observed a decrease in carnitine in the GDM group 430 
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that seems to be caused by the trapping effect of acetyl-CoA. This is supported by the 431 

observation that the ratio of long-chain acylcarnitines/carnitine did not differ between control 432 

and diabetic women, whereas the ratio acetyl-carnitine/carnitine was significantly augmented in 433 

the second group. Furthermore, the observed decrease in carnitine is considered a hallmark of 434 

glucose intolerance and insulin resistance [47].  435 

We also found that glycine and pyruvate were significantly reduced in GDM. Recent 436 

metabolomics studies found a decrease of glycine in patients with IGT, type 2-diabetes, obesity, 437 

and impaired insulin sensitivity [21, 48], and in prospective studies, decreased glycine has also 438 

been proposed as an independent predictor of type 2-diabetes [23] and IGT [6]. Reduced glycine 439 

in GDM, may reflect on enhanced gluconeogenesis, glutathione synthesis [49] or both (detailed 440 

in Fig. 4). The role of glycine as an indicator of increased gluconeogenesis during fasting in the 441 

GDM group is further support by the fact that pyruvate is also significantly lower in GDM. It 442 

should be considered that, in fasting conditions, pyruvate is used preferentially for 443 

gluconeogenesis rather than for oxidation upon conversion to acetyl-CoA. Under these 444 

circumstances, fatty acids turn into the predominant susbtrate for energy production. A switch to 445 

fatty acid oxidation is further supported by increased levels of 3-hydroxybutyrate in GDM 446 

women under fasting conditions (this study), similar to what has been observed previously in the 447 

2nd trimester of gestation in GDM [50]. 448 

Finally, we observed that plasma 2-hydroxybutyrate levels, an organic acid derived from 2-449 

ketobutyrate in a reaction catalyzed by lactate dehydrogenase, were higher in GDM than in 450 

controls. 2-hydroxybutyrate is also elevated in human and animal models of type 2-diabetes [51] 451 

and has been proposed as an independent and early predictor of glucose intolerance in humans 452 
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[5, 21]. Accumulation of 2-hydroxybutyrate may occur in vivo when the formation of 2-453 

ketobutyrate exceeds the rate of its catabolism. As detailed in Fig. 4, our interpretation that a 454 

redox imbalance may contribute to elevated 2-hydroxybutyrate is consistent with our finding that 455 

fatty acid oxidation is increased in GDM.  456 

 457 

Concluding remarks 458 

To our knowledge, this study represents the first multi-platform, non-targeted metabolome-wide 459 

analyses in plasma and urine of GDM. We show that, in the 2nd trimester of gestation, metabolite 460 

fingerprints in plasma reveal metabolic imbalances that are specific for human GDM. Some of 461 

the observed alterations have been previously associated with impaired glucose homeostasis. 462 

Nonetheless, we were able to identify specific metabolic patterns that are indicative of low-grade 463 

inflammation and altered redox-balance, which may reflect on the specific pathophysiological 464 

context of GDM. As this is a pilot study, future projects at later stages of gestation will allow us 465 

to validate the identified discriminant biomarkers as tools to predict the onset of diabetic 466 

complications both during pregnancy and after delivery. 467 

468 
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Figure 1. Score plots of plasma (A-E) and urine (F) metabolic profiles obtained for control 630 

(☐) and GDM women ().  631 

A-B. Unsupervised PCA analysis.  632 

(A) LC-MS ESI+ (R2=0.53, Q2=0.48) (B) LC-MS ESI- (R2=0.43, Q2=0.34). The plots indicate 633 

that healthy controls can be clearly separated from most of GDM individuals.  634 

C-F. Supervised OPLS/O2PLS-DA analysis. 635 

C, D- OPLS/O2PLS-DA model (R2= 0.97, Q2=0.83 and R2= 0.99, Q2=0.9) built for the two 636 

groups (GDM women versus healthy controls) based on 626 LC-MS ESI+ (C) and 487 LC-MS 637 

ESI- (D) detected variables. 638 

E, F- OPLS/O2PLS-DA model built for the two groups according to 48 GC-MS (R2=0.75, 639 

Q2=0.5) (E) and 127 CE-MS (R2= 0.91, Q2=0.69) (F) detected variables.  640 

R2= coefficient for variance explained; Q2= coefficient for variance predicted. 641 

 642 

Figure 2. Dendrogram and heat map of plasma metabolites. 643 

Cluster analysis of LC-MS data was performed in order to identify patterns of metabolites that 644 

discriminate between control and GDM women. The heat map represents the signal intensities of 645 

20 pregnant women with normal glucose tolerance (), and 20 pregnant women that were 646 

diagnosed with GDM () according to the 2h-OGTT. Colors reflect on signal intensity; 647 

measured in plasma samples. The spectrum ranging from red to blue represents the range of high 648 

to low signal intensities, respectively, for each metabolite, identified by numbers as described 649 

below. Black color indicates missing values. The X-axis was divided into two sections by a 650 

white discontinuous line, representing 2h-glucose below or above the threshold value of >140 651 

mg/dL (7,8 mM) for diagnosis of GDM. The Y-axis was divided into three sections, representing 652 

high, medium and low metabolite concentrations (the identification of all compounds is available 653 

as supplementary material). Two samples, classified as control (17C) and GDM (20D) according 654 

to the 2h-OGTT, are marked with arrows to highlight a different metabolic pattern of their 655 

corresponding group. Follow-up of these women throughout pregnancy revealed that, two weeks 656 

before delivery, the study participant 17C who was classified as control had HbA1c of 9%. The 657 

GDM woman 20D received dietary treatment and, during the rest of gestation, fasting glucose 658 

fell below 100 mg/dL (5.55 mM). 659 

1-SM(34:1); 2-Oleamide; 3-LPC(16:0); 4-SM(36:2); 5-SM(34:2); 6-LPC(18:2)sn-2; 7-Linoleamide; 8-660 

Palimitic amide; 9-LPA(16:0); 10-Dodecanamide; 11-LPI(16:1); 12-LPI(16:0); 13-PC(40:3); 14-661 

PC(38:1); 15-PC(32:2); 16-PE(36:3); 17-LPC(18:1)sn-2; 18-LPC(18:0)sn-2; 19-PC(36:6); 20-662 

Docosenamide; 21-PC(35:4); 22-PC(O-38:6) or PC(P-38:5); 23-LPE(20:1); 24-LPE(20:0); 25-LPE(18:0); 663 
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26-LPC(18:3)sn-2; 27-LPE(20:2); 28-Oleoyl Ethylamide; 29-Octadecatrienal; 30-PE(38:5); 31-PC(40:9); 664 

32-PC(40:7); 33-Octadecatrienol; 34-PC(36:5); 35-PC(40:8); 36-PC(38:7); 37-LPE(16:0); 38-SM(36:3); 665 

39-PC(38:5); 40-LPE(22:6); 41-LPE(22:4); 42-Asparylthreonine; 43-Acetylglutamine; 44-Phosphatidyl-666 

myo-inositol; 45-PC(36:4); 46-LPE(20:4); 47-PC(P-36:5); 48-LPE(18:1); 49-LPE(O-18:1) or LPE(P-667 

18:0); 50-LPI(18:2); 51-LPC(22:5)sn-2; 52-LPC(20:4)sn-2; 53-LPC(17:0)sn-2; 54-LPC(O-16:0)sn-1; 55-668 

Acetylcarnitine; 56-PC(42:7); 57-LPC (20:3)sn-1; 58-LPI(20:4); 59-LPS(20:0); 60-LPC(20:5)sn-2; 61-669 

Lipoxin C4; 62-LPE(18:2); 63-LPC(16:1)sn-2; 64-SM(32:2); 65-Hexadecatrienol; 66-Trioxocholenoic 670 

acid; 67-PC(35:3); 68-Carnitine; 69-Taurolithocholic acid glucuronide; 70-PC(19:1); 71-PE(38:6); 72-671 

PE(36:5); 73-Asparylhydrohyproline; 74-Cerebronic acid; 75-PS(26:0); 76-PC(21:0 (COOH)); 77-672 

LPI(20:3); 78-LPC(22:6)sn-2; 79-LPC(22:4)sn-2; 80-Oxo-nonadecanoic acid; 81-LPS(20:2); 82-673 

Hydroxynervonic acid; 83-LPE(19:0); 84-LPA(18:2); 85-LPE(18:3); 86-LPE(22:1); 87-LPC(O-18:1)sn-1 674 

or LPC (P-18:O)sn-1; 88-PC(27:0); 89-LPC(19:1); 90-Stearoylcarnitine; 91-Linoleylcarnitine; 92-675 

PC(42:9); 93-SM(33:2); 94-Trihydroxy-cholestanoyl taurine; 95-LPC(20:2)sn-2; 96-676 

Glycerophosphocholine; 97-Arachidonic Acid Methylester; 98-Docosahexaenoic Acid Methylester; 99-677 

PC(21:1); 100-PC(42:8); 101-Dihydroxytetranorvitamin D3; 102-Pentadecadienal; 103-PC(19:0); 104-678 

LPI(22:6); 105-Anandamide (20:2, n-6); 106-LPE(P-20:0); 107- LPC(20:0)sn-2; 108-LPC(17:1)sn-2; 679 

109-LPC(24:0)sn-2; 110-LPC(O-18:0)sn-1; 111-Dimethyl-undecadienone; 112-Tetradecadienal; 113-680 

Tetramethyltridecadienal; 114-Dodecadienal; 115-Oxo-heneicosanoic acid; 116-Sphingosine-phosphate; 681 

117-Palmitoylcarnitine; 118-PA(28:0); 119-PA(38:6); 120-LPC(14:0)sn-2; 121-Epoxy-dimethyl-682 

cyclocholestan-ol; 122-PE-Cer(34:1); 123-LPE(P-16:0); 124-LPC(20:1)sn-1; 125-Palmitoyl 683 

Isopropylamide; 126-LPC(15:0)sn-2; 127-PE-Cer(33:1); 128-Vaccenylcarnitine; 129-PC(42:10); 130-684 

Hydroxy-oxo-cholanoic acid; 131-Histidine. 685 

 686 

Figure 3. Comparative description of the main lysoglycerophospholipids in control and 687 

GDM pregnant women at the second trimester of gestation. 688 

(A) lysophosphatidylcholines (LPC); (B) lysophosphatidylethanolamines (LPE) and (C) 689 

lysophosphatidylinositols (LPI).  690 

Data are given in percentage (%) and represent the area of the lysoglycerophospholipids with 691 

saturated, monounsaturated (MUFA) or polyunsaturated (PUFA) acyl chains relative to the total 692 

area.  693 

 694 

Figure 4. Proposed model of metabolic alterations in the second trimester of GDM, with a 695 

special focus on lipid metabolism. 696 

We hypothesized that, at beginning of pregnancy, GDM is characterized by an increased 697 

response to fasting. During this response, fatty acids (NEFA) turn into the major substrate for 698 

energy production, favouring oxidative stress and a mild inflammatory condition. In this 699 

scenario, an enhanced lipolysis (1) in adipose tissue (supported by increased glycerol and linoleic 700 

acid (C18:2)) favors liver and muscle NEFA availability. In both tissues, lipid overload drives an 701 
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intramitochondrial flux of acyl-CoA for NEFA oxidation, which results in decreased long-chain 702 

acylcarnitines (LC-AC) and accumulation of acetyl-CoA (2). This metabolite is converted into 703 

acetyl-carnitine (3), permitting its mitochondrial efflux that otherwise would inhibit pyruvate 704 

dehydrogenase. This situation causes depletion of carnitine and, consequently, decreased 705 

excretion of this metabolite into the circulation as well as increased levels of circulating acetyl-706 

carnitine (4).  707 

In humans, the liver accounts for most of the NEFA oxidation during fasting. In this condition, 708 

acetyl-CoA can be used for 3-hydroxybutyrate (3-HB) synthesis, contributing to the ketonemia 709 

observed in GDM women (5), or may activate pyruvate carboxylase, favoring gluconeogenesis 710 

(6). Thus, pyruvate and glycerol (7) are used preferentially for gluconeogenesis, favouring 711 

glucose intolerance (8). Reduced glycine in GDM may also reflect on enhanced gluconeogenesis, 712 

since glycine can be converted to glucose via pyruvate production or/and, to glutathione (GSH) 713 

(9). 714 

Enhanced mitochondrial activity also increases the NADH+H+/NAD+ ratio and oxygen radical 715 

production (2). To cope with the resulting oxidative stress, glutathione biosynthesis is activated 716 

(10), which is supported by the observed decreased in glycine and glutamate and the concomitant 717 

increase of 2-hydroxybutyrate (2-HB). 2-ketobutyrate (2-KB) is produced through the 718 

conversion of cystathionine to cysteine for glutathione biosynthesis (11). Subsequently, 2-KB is 719 

reduced to 2-HB (12), which is favored by the observed increase of the NADH/NAD+ ratio (2). 720 

Thus, 2–HB is associated with an increased demand for glutathione biosynthesis and disrupted 721 

mitochondrial energy metabolism.  722 

The reduced de novo sphingolipid synthesis found in GDM, probably as a consequence of serine 723 

availability (13), favors the flux of palmitate (16:0) towards TG, leading to the 724 

hypertrigliceridemia observed in GDM women (14). In this condition, enhanced TG biosynthesis 725 

may also cause that phosphatidic acid is not used for the synthesis of glycerophospholipids (PL) 726 

(15), favouring the observed decrease in lysophospholipids (LysoPL). The fact that cysteine 727 

metabolism is favoring glutathione biosynthesis may be associated with a decrease in SAM, a 728 

key molecule for the transformation of PC to PE in the liver.  729 

Finally, de novo sphingolipid synthesis is reduced (13); probably ceramides are synthesized via 730 

sphingomyelin hydrolysis or through the salvage pathway from sphingosine 1-phosphate (S1P) 731 

(16), which would explain the observed decrease of these lipids. Decreased ethanolamine-732 

plasmalogen (Et-Plasm) levels may be a consequence of their increased utilization as 733 

antioxidants (17) or of a decreased synthesis from S1P (18). 734 

Other abbreviations: OAA: oxaloacetate; 2-KG: 2-ketoglutarate. 735 

Arrows indicate whether the level of a given metabolite was increased (red) or decreased (blue) 736 

according to the metabolome analysis performed in the present study Discontinuous arrows 737 

represent a reduced utilization of the corresponding metabolic route.  738 
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* gluconeogenesis takes place only in the liver. 739 
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Table 1. Anthropometric and metabolic characteristic of the women included in 
the study. 

Parameter Control group  
n=20 

GDM group 
n=20 

P-value 

Age (years) 28.5 ± 2.7 28.1 ± 4.7 ns 
Parity (number) 1.3 ± 0.6 1.4 ± 0.8 ns 
Week of gestation 24.8 ± 1.3 25.5 ± 1.6 ns 
Pre-pregnancy BMI (kg/m2) 22.0 ± 2.7 24.6 ± 5.1 ns 
Pregnancy BMI (kg/m2) 23.8 ± 2.5 27.4 ± 5.5 0.01 
Fasting glucose (mmol/L) 4.41 ± 0.29 5.10 ± 0.79  0.001 
1-h glucose, OGTT (mmol/L) 6.64 ± 0.91 8.99 ± 1.87 <0.0001 
2-h glucose, OGTT (mmol/L) 5.76  ± 0.91 8.97 ± 1.02  <0.0001 
AUC-G 12680 ± 1316 17324 ± 2204 <0.0001 

HbA1C                                                  (%)                                          
(mmol/mol) 

4.78 ± 0.31 
28.7 ± 3.4 

5.23 ± 0.39 
33.6 ± 4.3 0.0003 

Insulin (pmol/L) 73.8 ± 22.0 78.5 ± 35.5 ns 
C Peptide (pmol/L) 0.53 ± 0.16 0.58 ± 0.21 ns 
HOMA-IR 2.43  ± 0.78 2.98 ± 1.44 ns 

QUICKI 0.34  ± 0.02 0.33  ± 0.02  ns 

Triacylglycerides (mmol/L) 1.58 ± 0.60 2.19 ± 0.64 0.004 

Total cholesterol (mmol/L) 6.30 ± 0.95 6.94 ± 0.92 0.038 

LDL-cholesterol (mmol/L) 3.51 ± 0.76 3.75 ± 0.91 ns 

HDL-cholesterol (mmol/L) 2.13 ± 0.45 2.23 ± 0.42 ns 
CRP (µg/ml) 3.94 ± 3.29 4.94 ± 3.94 ns 
Systolic blood pressure (mmHg) 117.0 ± 7.2 117.0 ± 11.8 ns 
Diastolic blood pressure (mmHg) 72.3 ± 9.6 71.6 ± 9.6 ns 
Presented data are mean ± SD. Statistical comparisons assuming equal (t test) or 
unequal variance (Welch’s t test) were performed as appropriate. AUC-G: Area under 
the curve of glucose during the OGTT. Results were considered significant when 
P<0.05. 
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Table 2. List of selected metabolites identified in plasma or urine by a 
multiplatform metabolomic analysis that exhibit the most significant changes with 
gestational diabetes.   

Identified compound P value 
Change 

(%) 

CV in QC 

(%) 

LC-MS (Plasma) 

LPE(20:2) 6.66E-15 -66 7 

LPE(20:1) 2.08E-14 -59 4 

Trihydroxy-cholestanoyl taurine 9.70E-14 -53 5 

LPA(18:2) 1.54E-13 -56 18 

LPC(20:5) sn-2 8.27E-13 -73 14 

LPI(20:4) 1.43E-12 -75 8 

LPC(18:2) sn-2 1.72E-12 -66 15 

PC(21:1) 1.72E-12 -77 23 

LPC(18:1) sn-2 5.32E-12 -63 11 

LPE(22:4) 5.66E-12 -59 6 

LPS(20:0) 6.07E-12 -63 7 

Lipoxin C4 8.26E-12 -39 10 

LPC(22:5) sn-2 9.77E-12 -70 12 

LPC(22:4) sn-2 1.67E-11 -69 16 

LPI(18:2) 2.38E-11 -73 9 

LPC(20:2) sn-2 2.60E-11 -67 15 

LPC(20:4) sn-2 3.55E-11 -76 12 

Taurolithocholic acid glucuronide 4.93E-11 -60 23 

LPC(19:1) 1.90E-10 -54 11 

Glycerophosphocholine 3.22E-10 -61 4 

Docosahexaenoic acid Methylester 3.25E-10 -73 11 

LPI(22:6) 4.66E-10 -70 26 

Arachidonic acid Methylester 7.76E-10 -72 19 

LPC(22:6) sn-2 1.02E-09 -55 9 

LPI(20:3) 1.86E-09 -67 20 

LPE(18:2) 4.61E-08 -51 5 

LPE(20:4) 6.25E-08 -52 7 
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LPE(22:6) 6.40E-08 -44 4 

GC-MS (Plasma) 

Creatinine 3.1E-5 -49 10 

Pyruvic acid 5.0E-5 -54   

L-tryptophan 2.0E-3 -24 25 

2-hydroxybutyric acid 3.3E-3 68 13 

Glycine 6.2E-3 -39 15 

L-glutamic acid 1.7E-2 -14 11 

Lauric acid 1,9E-2 -24 8 

Glycerol 3.4E-2 19 14 

3-hydroxybutyric acid 5.0E-2 75   

Linoleic acid 5.0E-2 19 11 

Fumaric acid 5.0E-2 15   

CE-MS (Urine) 

Carnitine 2.99E-02 -46 12 

Histidine 3.20E-02 32 4 

Glutamine JK 36 15 

Phenylalanine JK 19 4 

Tryptophan JK 23 4 

Cystine JK 24 7 

For LC-MS only those metabolites with P values <1.10-7 are shown. The complete list 
of compounds is included as supplementary material. For GC-MS and CE-MS all 
compounds with P <0.05 between GDM and controls are shown. % change represents 
the increase (+) or decrease (-) of the mean in the gestational diabetes group with 
respect to the control group, the sign indicates the direction of the change. CV in QC 
indicates the % of variation of the quality control that was included in the analysis. 
When necessary data were transformed by applying a log(base 2) in order to 
approximate a normal distribution. Univariate statistical analysis assuming equal (t test) 
or unequal variance (Welch’s t test) were performed as appropriate. P value was 
corrected according FDR test and P <0.05 was considered significant. Multivariate 
statistical analysis Jack-Knife (JK) confidence intervals estimative, 95% confidence 
level. 
 



Table 3. Correlation analysis. 
 
Compound 0h glucose 2h Glucose AUC-G HBA1C HOMA 
Arachidonic acid methylester -0.4152** -0.7984### -0.7331### -0.5228*** -0.1974 
LPS(21:0) -0.3342* -0.7971### -0.6743## -0.5052*** -0.1353 
LPE(20:1) -0.3410* -0.7934### -0.6720## -0.5076*** -0.1447 
Trihydroxy-cholestanoyl 
taurine -0.3374* -0.7893### -0.6631# -0.4908** -0.1519 
LPE(20:2) -0.3869* -0.7812### -0.6799## -0.5394** -0.0712 
LPC(18:2)sn-2 -0.3984* -0.7713### -0.6893## -0.5530** -0.1790 
LPC(20:4)sn-2 -0.3391* -0.7684### -0.6691## -0.4808** -0.2090 
LPC(18:1)sn-2 -0.3183* -0.7658### -0.6392## -0.4753** -0.1664 
LPI(18:2) -0.3804* -0.7649### -0.6577## -0.5348*** -0.1112 
LPS(20:0) -0.3909* -0.7633### -0.7062### -0.5194*** -0.1006 
LPI(20:4) -0.3675* -0.7576### -0.6762## -0.4601** -0.0846 
LPC(20:5)sn-2 -0.4028** -0.7531### -0.6801## -0.5204*** -0.2019 
Taurolithocholic acid 
glucuronide -0.3344* -0.7489### -0.6392# -0.4117** -0,1121 
LPE(22:4) -0.3619* -0.7472### -0.6936## -0.5183*** -0,0258 
LPC(19:1) -0.3856* -0.7424### -0.6833## -0.4568** -0.1568 
LPE(18:2) -0.3354* -0.7420### -0.6329# -0.5196*** -0.1478 
Glycerophosphocholine  -0.1958 -0.7419### -0.6717## -0.3537* -0.2752 
PC(21:1) -0.3677* -0.7416### -0.6801## -0.5042*** -0.1872 
LPE(22:1) -0.4061** -0.7368### -0.7082### -0.4431** -0.2346 
LPI(22:6) -0.4143* -0.7279### -0.6426## -0.4641** -0.0894 
LPA(18:2) -0.3502* -0.7241### -0.6421# -0.4497** -0.1840 
LPI(16:1) -0.4845** -0.7206## -0.6073*** -0.4985** -0.0478 
Docosahexaenoic acid 
methylester -0.3914* -0.7186### -0.6787## -0.4716** -0.2203 
LPC(O-18:0)sn-1 -0.3112* -0.7150### -0.6155# -0.4048** -0.3264* 
LPE(22:6) -0.3774* -0.7080## -0.6403## -0.4790** -0.1102 
Dihydroxy-cholestanoyl 
taurine -0.2415 -0.7065### -0.6010# -0.3503* -0.0955 
LPC(22:5)sn-2 -0.3581* -0.6956## -0.5983# -0.4273** -0,1983 
LPC(22:4)sn-2 -0.3917* -0.6953## -0.6136# -0.4745** -0.1547 
LPC(20:2) -0.3725* -0.6952## -0.5867# -0.4072** -0.2029 
LPC(22:6)sn-2 -0.3288* -0.6915## -0.5956*** -0.4266** -0.1448 
LPC(O-16:0)sn-1 -0.2589 -0.6899## -0.5984# -0.3703 -0.2656 
LPC(20:1)sn-1 -0.3770* -0.6896## -0.6290# -0.4484** -0,3447* 
PC(O-38:6) or PC(P-38:5) -0.3214* -0.6867## -0.5977*** -0.3761 -0.1471 
Epoxy-dimethyl-
cyclocholestanol -0.2428 -0.6857## -0.6273# -0.3922* -0.0507 
LPE(O-18:1) or LPE(P-18:0) -0.2607 -0.6843## -0.6250# -0.3637* -0.1600 
LPC(O-18:1) or LPC (P-18:O)  -0.3295* -0.6823## -0.6303# -0.3168* -0.3789* 
LPI(20:3) -0.5047** -0.6811## -0.6662## -0.5162** -0.2676 
PE(36:3) -0.3061 -0.6810## -0.6929## -0.2945 -0.3165* 
LPE(P-16:0) -0.1444 -0.6781## -0.5392*** -0.2141 -0.2523 
LPE(20:0) -0.3108 -0.6712## -0.6208# -0.4380** -0.1533 
LPE(15:1) -0,2123 -0.6670## -0.6027# -0.3163* -0.1365 
Palmitoyl isopropylamine -0.2839 -0.6634## -0.5471*** -0.3960* -0.1194 
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Oleoyl ethylamine -0.3307* -0.6629## -0.5277*** -0.4320** -0.1164 
PC(19:0) -0.2964 -0.6592## -0.6035*** -0.3338* -0.2048 
LPC(18:0) -0.2370 -0.6582## -0.5625*** -0.3575* -0.2002 
Lipoxin C4 -0.3367* -0.6577## -0.6010# -0.4673** -0.1615 
Only metabolites with Spearman coefficients (rs) higher than 0.65 for correlation with 2h-
glucose are shown. * P< 0.05; ** P< 0.01; *** P< 0.001; # P< 0.0001; ## P< 0.00001; ### P< 
0.000001.  Correlations with P value < 0.0001 are color in gray.  

 



Table 4. ROC analysis. 

Compound AUC P value Sensitivity 
(%) 

Specificity 
(%) 

Likelihood 
Ratio 

LPC(18:1) 0.988 <0.0001 100 95 19 
LPC(18:2) 0.990 <0.0001 100 95 20 
LPC(19:1) 0.960 <0.0001 90 95 18 
LPC(20:1) 0.940 <0.0001 90 95 18 
LPC(20:2) 0.980 <0.0001 95 95 19 
LPC(20:4) 0.980 <0.0001 95 95 19 
LPC(20:5) 0.988 <0.0001 100 95 20 
LPC(22:4) 0.983 <0.0001 95 95 19 
LPC(22:5) 0.990 <0.0001 90 95 18 
LPC(22:6) 0.971 <0.0001 90 95 18 
LPE(18:2) 0.965 <0.0001 80 95 16 
LPE(20:0) 0,950 <0.0001 85 95 17 
LPE(20:1) 0.995 <0.0001 100 95 20 
LPE(20:2) 0.995 <0.0001 100 95 20 
LPE(22:1) 0.945 <0.0001 95 95 19 
LPE(22:4) 0.985 <0.0001 100 95 20 
LPE(22:6) 0.958 <0.0001 75 95 15 
LPS(20:0) 0.995 <0.0001 100 95 20 
LPS(21:0) 0.995 <0.0001 100 95 20 
LPS(22:0) 0.960 <0.0001 90 95 18 
LPI(18:2) 0.990 <0.0001 100 95 20 
LPI(20:3) 0.969 <0.0001 75 95 15 
LPI(20:4) 0.980 <0.0001 100 95 19 
LPI(22:6) 0,973 <0.0001 95 95 19 
LPA(18:2) 0.990 <0.0001 100 95 20 
PC(21:1) 0.988 <0.0001 100 95 20 
Docosahexaenoic acid 
methylester 

0.975 <0.0001 95 95 19 

Araquidonate methylester 0.968 <0.0001 95 95 19 
Glycerophosphocholine 0.959 <0.0001 94 95 19 
Lipoxin C4 0.943 <0.0001 90 95 18 
Trihydroxy-cholestanoyl 
taurine 

0.995 <0.0001 100 95 20 

Taurolithocholic 
glucuronide 

0.990 <0.0001 95 95 19 

Receiver-operating characteristic (ROC) curves were prepared by plotting the 
sensitivity against the corresponding false-positive rate (100-specificity). Table shows 
the area under the curve (AUC), and the best sensitivity, specificity and likelyhood ratio 
for a selected cut-off of each parameter. 
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