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Abstract 90 

Gestational Diabetes Mellitus (GDM) causes severe short- and long-term complications 91 

for the mother, fetus and neonate, including type 2-diabetes (T2DM) later in life.  92 

In this pilot study, GC-Q/MS analysis was applied for plasma metabolomics 93 

fingerprinting of 24 healthy and 24 women with GDM at different stages of gestation 94 

(second and third trimester) and postpartum (one and three months). Multivariate 95 

(unsupervised and supervised) statistical analysis was performed to investigate variance 96 

in the data, identify outliers and for unbiased assessment of data quality. 97 

Plasma fingerprints allowed for the discrimination of GDM pregnant women from 98 

controls both in the 2nd and 3rd trimesters of gestation. However, metabolic profiles tended 99 

to be similar after delivery.  Follow up of these women revealed that 4 of them developed 100 

T2DM within 2 years postpartum. Multivariate PLS-DA models limited to women with 101 

GDM showed clear separation 3 months postpartum. In the 2nd trimester of gestation there 102 

was also a clear separation between GDM women that were normoglycemic after 103 

pregnancy and those with recognized postpartum T2DM. 104 

Metabolites that had the strongest discriminative power between these groups in the 2nd 105 

trimester of gestation were 2-hydroxybutyrate, 3-hydroxybutyrate, and stearic acid. We 106 

have described, for the first time, that early GDM comprises metabotypes that are 107 

associated with the risk of future complications, including postpartum T2DM. In this pilot 108 

study, we provide evidence that 2-hydroxybutyrate and 3-hydroxybutyrate may be 109 

considered as future prognostic biomarkers to predict the onset of diabetic complications 110 

in women with gestational diabetes after delivery.  111 

Keywords: Gestational diabetes mellitus; maternal metabolism; fingerprinting; type 2-112 

diabetes mellitus; gas chromatography; metabolomics. 113 
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Abbreviations: ANOVA: analisis of variance; BMI: body mass index; CRP: C-reactive 114 

protein; EI: electron ionization; FDR: false discovery rate; GC: gas chromatography; GC-115 

MS: gas chromatography couple with mass spectrometry; GC-EI-MS-Q: gas 116 

chromatography-electrospray ionization single quadrupole mass spectrometry; GDM: 117 

gestational diabetes mellitus; HbA1c: glycated haemoglobin; HDL: high density 118 

lipoprotein; HOMA-IR: homoeostasis model assessment-insulin resistance; LC-MS: 119 

liquid chromatography couple with mass spectrometry LDL: low density lipoprotein; MS: 120 

mass spectrometry; OGTT: oral glucose tolerance test; PLS-DA: partial least squares 121 

discriminant analysis; QA: quality assurance; QC: Quality control; QUICKI: quantitative 122 

insulin sensitivity check index; RSD: relative standard deviation; RI: retention indexes; 123 

ROC: receiver operator curve; RT: retention time; RTL: Retention Time Locked; T2DM: 124 

type 2-diabetes mellitus.  125 
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1 Introduction 126 

Gestational Diabetes Mellitus (GDM), defined as “any degree of glucose intolerance with 127 

onset or first recognition during pregnancy”[1], is increasing worldwide and it is expected 128 

to further rise as the epidemic of obesity continues. Despite advances in diagnosis and 129 

good maternal control [2], GDM is associated with short- and long-term complications 130 

for both the mother and the offspring, including caesarean and operative vaginal delivery, 131 

maternal pre-eclampsia, or newborn macrosomia, shoulder dystocia, hypoglycemia or 132 

hyperbilirubinemia [3, 4]. Furthermore, although GDM usually remits shortly after 133 

delivery, these women have a high risk of developing postpartum glycemic alterations, 134 

such as glucose intolerance or even type 2-diabetes mellitus (T2DM) [5, 6, 7]. Although 135 

this association is well established, the magnitude of the risk varies among different 136 

studies. Generally, this has been explained by differences in the diagnostic criteria and 137 

the design of the study (e.g. selection and number of the participants, length of follow-138 

up) [8]. Thus, women with GDM should be followed up after parturition to allow 139 

detection of early development of T2DM. In this scenario, it is of interest to detect women 140 

at a higher risk of future T2DM before delivery and, if possible, at the time of GDM 141 

diagnosis. Therefore, a better understanding of the pathophysiology of GDM as well as 142 

the identification of potentially early diagnostic markers for GDM, are one of the most 143 

relevant health issues. 144 

Current “omics” techniques, in particular metabolomics, provide deeper insights into 145 

disease-related metabolic alterations and etiopathogenesis of the diseases and, 146 

accordingly, are useful in biomarker discovery. In fact, the approaches to translate basic 147 

metabolomics into clinical applications are increasing. A growing number of 148 

metabolomics studies, aimed at uncovering the metabolic signature of T2DM [9,10], 149 

focus on potential biomarkers of altered glucose tolerance and onset of insulin resistance. 150 
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Despite disparities in predictive biomarkers [11], metabolomics studies have the potential 151 

to determine sets of metabolites that are predictive of both prediabetes and T2DM, even 152 

before the onset of disease, thereby improving patients’ health, as shown recently for 153 

T2DM [12]. In fact, an increasing number of studies have confirmed elevation of 154 

circulating branched-chain amino acids and 2-hydroxybutyrate before manifestation of 155 

T2DM. On the contrary, glycine and lysophosphatidylcholine C18:2 concentrations were 156 

found to be decreased in both predictive studies and with overt disease [11, 13]. Thus, 157 

although there is much work left to do, the evidence of metabolomics benefitting T2DM 158 

care makes its clinical application inevitable, and this can be extended to GDM. 159 

The first multi-platform, non-targeted metabolome wide analyse in plasma and urine of 160 

GDM was presented in our previous study [14]. We found that, in the 2nd trimester of 161 

gestation, plasma metabolite fingerprints revealed metabolic imbalances and proposed a 162 

comprehensive picture of the early metabolic alterations in GDM. In particular, we 163 

provided evidence for the implication of some compounds, as 2-hydroxybutyrate, 164 

glycine, lysophosphatidylcholine (18:2), and other lysophospholipids, in metabolic routes 165 

that may be associated with the early genesis of GDM, which highlights their potential 166 

use as prognostic markers for the identification of women at risk to develop severe 167 

glucose intolerance during pregnancy [14]. However, up to now it has not been analyzed 168 

whether there are differences in the metabolic profiles of those women at higher risk of 169 

T2DM after delivery. 170 

Based on these findings, we propose that in GDM there are different metabotypes 171 

associated with further post-partum glycemic alterations that can be detected by 172 

metabolomics. To corroborate this hypothesis, we devised a metabolomics approach to 173 

obtain a picture of metabolic profiles during and after pregnancy, with the ultimate goal 174 
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to identify metabotypes of GDM and to eventually identify potential biomarkers that 175 

predict the risk of GDM pregnant women to develop T2DM after delivery. 176 

2 Materials and methods 177 

2.1 Experimental design and Study Population 178 

All participants were recruited in the Public Clinic Hospital, Medical University of 179 

Bialystok (Poland). Women having overt diabetes mellitus or other complications were 180 

excluded from the study. At the initiation of the study the population consisted of total 68 181 

participants, matched according to week of gestation and age (22-37 years). Screening of 182 

GDM was performed at 22-28 weeks of gestation after overnight fasting by an oral 183 

glucose tolerance test (OGTT). GDM was defined, according to WHO-1998 criteria, as 184 

glucose level ≥140 mg/dl (7.8 mmol/L) after 2-h 75-g OGTT. After GDM diagnosis, the 185 

control and GDM groups included 37 healthy pregnant women and 31women with GDM, 186 

respectively. Fasting blood samples were collected in into EDTA containing tubes at 187 

different times: 2nd (at the day of the OGTT) and 3rd trimester of gestation, and 1 month 188 

and 3 months after delivery. When 2 or more time-samples were missing, the woman was 189 

excluded from the analysis. Finally, 24 control and 24 cases were included in the study. 190 

Women diagnosed with GDM were followed for two years after delivery. 191 

The study was carried out in accordance with the permission of the Bioethical 192 

Commission of the Medical University of Bialystok. Written informed consent was 193 

obtained from each participant in the study. 194 

2.2 Biochemical analysis and indexes of insulin resistance 195 

Plasma glucose, cholesterol, LDL/HDL-cholesterol, triacylglycerols and C-reactive 196 

protein (CRP) were measured in an autoanalyzer (Cobas C111 Roche Autoanalyzer, 197 

Hoffmann-LaRoche Ltd., Basel Switzerland). Blood HbA1c was analyzed by the D- 198 

10TM Hemoglobin Testing System (Bio-Rad, USA), C-peptide by an ELISA kit 199 



11 
 

(Biosource International, Inc., Belgium), and insulin with an INS-IRMA-RIA kit 200 

(DIAsource ImmunoAssays S.A., Belgium). HOMA-IR (homoeostasis model 201 

assessment-insulin resistance) [15] and QUICKI (quantitative insulin sensitivity check 202 

index) [16] indexes were calculated with fasting glucose (mg/dL) and insulin (μU/mL) as 203 

described. 204 

2.3 Chemicals and reagents 205 

Standard mix for GC-MS, containing grain fatty acid methyl ester mixture (C8:0-206 

C22:1n9), and LC-MS grade organic solvents, acetonitrile, 2-propanol and analytical 207 

grade heptane were from Fluka Analytical (Sigma-AldrichChemie GmbH, Steinheim, 208 

Germany). C18:0 methyl ester, N,O-bis(trimethylsilyl)trifluoroacetamide with 1% 209 

trimethylchlorosilane were from (Pierce Chemical Co, Rockford, IL, USA). Silylation 210 

grade pyridine was from VWR International BHD Prolabo (Madrid, Spain). 211 

2.4 Sample preparation 212 

Metabolic extracts from plasma were prepared for analysis as previously described [14]. 213 

Plasma (50 µL) protein was precipitated with cold acetonitrile (150 µL) and separated by 214 

centrifugation (15400g, 10min, 4°C). The resulting supernatant was transferred to GC 215 

vial with insert and then evaporated to dryness (Speedvac Concentrator, Thermo Fisher 216 

Scientific, Waltham, MA, USA). Ten microliters (10 μL) of O-methoxyamine 217 

hydrochloride in pyridine (15 mg/mL) was added to each GC vial, and mixture was 218 

vigorously vortex-mixed and ultrasonicate. Methoxymation was carried out in darkness, 219 

at room temperature for 16 h. BSTFA with 1% TMCS (10 μL) was then added as catalyst. 220 

For silylation process samples were heated in an oven for 1 h at 70 °C. Finally, 100 μL 221 

of heptane containing 10 ppm of C18:0 methyl ester (IS) was added to each GC vial and 222 

vortex-mixed before GC analysis. Quality control (QC) samples were prepared by 223 
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pooling equal volumes of each sample and were subjected to identical extraction 224 

procedures as the experimental samples. 225 

 GC-EI-Q-MS analysis 226 

GC-MS analyses were performed by a GC system (Agilent Technologies 7890A) 227 

equipped with an autosampler (Agilent 7693) coupled to a mass spectrometer with triple-228 

Axis detector (5975C, Agilent). Two microliters (2 μL) of the derivatized sample were 229 

injected through a GC-Column DB5-MS (30 m length, 0.25 mm i.d., 0.25 μm film 95% 230 

dimethyl/5% diphenylpolysiloxane) with an integrated precolumn (10 m J&W, Agilent). 231 

Carrier gas (He) flow rate was set at 1 mL/min and injector temperature at 250 °C. Split 232 

ratio was fixed from 1:5 to 1:10 with 3 to 10 mL/min He split flow into a Restek 20782 233 

(Bellefonte, PA, USA) deactivated glass-wool split liner. The temperature gradient was 234 

programmed as follows: the initial oven temperature was set at 60 ºC (held for 1 min), 235 

increased to 325 ºC at 10 ºC/min rate (within 26.5 min) and hold 325 ºC for 10 min. The 236 

total run time was 37.5 min. A cool-down period was applied for 10 min before the next 237 

injection. Detector transfer line, filament source and the quadrupole temperature were set 238 

at 280 ºC, 230 ºC and 150 ºC, respectively. MS detection was performed with electron 239 

ionization (EI) mode at -70 eV. The mass spectrometer was operated in scan mode over 240 

a mass range of m/z 50-600 at a rate of 2.7 scan/s. Internal standard C18:0 methyl ester 241 

(10 ppm), a standard mix of fatty acid methyl esters (FAME C8-C30), extraction blank 242 

and 2 QCs samples were injected at the beginning of analysis, following QCs injections 243 

every 8 experimental samples and 2 QCs injections at the end of worklist. These 244 

conditions were optimized as described previously [17,18]. 245 

2.5 Data treatment and compound identification 246 

GC-MS data, peak detection and spectra processing algorithms were applied using the 247 

Agilent MSD ChemStation Software (G1701EA E.02.00.493, Agilent). The overall 248 
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quality of analytical performance was carefully examined by inspection of total ion 249 

chromatograms (TIC) of experimental samples, QC samples, blanks and internal 250 

standard. Automated Mass Spectrometry Deconvolution and Identification System 251 

(AMDIS) version 2.69 software from NIST (U.S. National Institute of Standards and 252 

Technology) was used for automatic mass spectral deconvolution to identify co-eluted 253 

compounds according to their retention indexes (RI) and retention times (RT). Retention 254 

times from analysis of fatty acid methyl ester standard solution was used to create a 255 

calibration data file for further adjustment of RT in samples. The accuracy improvement 256 

was based on the determination of the Kovats RI. Retention index value, contained in 257 

Fiehn RTL (Retention Time Locked) library was compared to the experimental RI value 258 

in order to assign a match score between the experimental and the theoretical spectra. 259 

Compounds were identified by comparing their mass fragmentation patterns with target 260 

metabolite Fiehn GC/MS Metabolomics RTL library (G1676AA, Agilent), the in-house 261 

CEMBIO-library and the NIST mass spectra library 2.0, using the ChemStation software 262 

and native PBM (Probability-Based Matching) algorithm (G1701EA E.02.00.493, 263 

Agilent). Alignment of drift (by retention time and mass) and data filtering were 264 

performed with the Mass Profiler Professional B.12.1 (Agilent) software. Variation of the 265 

compounds abundance in QC samples, expressed as relative standard deviation (%RSD), 266 

was also calculated. To limit results to metabolites with good repeatability, those features 267 

detected in <50% of all QC samples and with a RSD >30% in QC samples were removed. 268 

Data matrix was normalized according to internal standard C18:0 methyl ester intensity. 269 

2.6 Statistical analysis 270 

The sample size was calculated by power analysis (G*Power 3.1.9). According to our 271 

previous study [14] we considered 2-hydroxybutyrate as primary variable. Effect size was 272 

set at 1.0 and alpha 0.05. According to these values a study with 38 participants has 90% 273 
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power. While we finally included 24 controls and 24 GDM pregnant women (48 274 

participants), power increased to 95%. For multivariate (unsupervised and supervised) 275 

statistical analysis, the processed data matrix was imported to SIMCA-P+ 14.1 (Umetrics, 276 

Umea, Sweden). PCA (principal component analysis), where highly correlated metabolic 277 

variables are projected onto a smaller set of linearly uncorrelated variables called 278 

principal components [19], was performed to investigate multivariate variance in the data, 279 

identified sample outliers and to unbiased assessment of data quality (QCs sample 280 

plotting). Validation of partial least squares discriminant analysis (PLS-DA) models were 281 

performed by 7-fold cross validation algorithm as described [20]. Variable Importance in 282 

Projection (VIP) with VIP>1.0 cutoff and Jack-Knife with confidence intervals 283 

estimative, 95% confidence level was applied for the selection of key variables. Prior to 284 

univariate statistical analysis, data normality was verified by evaluation of the 285 

Kolmogorow−Smirnov−Lillefors and Shapiro−Wilk tests and variance ratio by the 286 

Levene’s test. Data are shown as mean ± SD or as median and interquartile range 287 

according the variable distribution. Differences between two groups were evaluated by 288 

paired or unpaired t test (equal or unequal variance) or nonparametric (Mann−Whitney 289 

test) with post hoc Benajmini-Hochberg (FDR, false discovery rate), and Bonferroni test 290 

respectively, for multiple comparisons. One-way ANOVA with repeated measures 291 

pairwise comparisons was applied to analyze data during pregnancy and postpartum.  292 

The levels of statistical significance for any statistical test performed, before and after 293 

multiple comparison correction were set at 95% level (P < 0.05). Statistical analyses were 294 

performed using Matlab R2015a. ROC analysis was performed using GraphPad 295 

programm (v. 6.0 for Macintosh). 296 

3. Results and discussion 297 

3.1. Study participants 298 
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As shown in Table 1, there was no difference in age, parity, and prepregnancy BMI in 299 

women participating in the study. In the 2nd trimester of pregnancy, there were no 300 

significant differences in blood pressure, BMI, HDL and LDL-cholesterol, insulin, C 301 

peptide, CRP, HOMA-IR and QUICKI between the control and the GDM women. 302 

However, women classified as GDM had significantly higher fasting glucose, HbA1c and 303 

triacylglycerides than controls and, during the OGTT, glucose levels were significantly 304 

higher at one and two hours in the women classified as GDM according to WHO-criteria 305 

(Table 1). Analysis of clinical data three months after delivery showed no significant 306 

differences in BMI, basal glucose, insulin, triacylglicerides, HDL and LDL-cholesterol, 307 

CRP, HbA1c, HOMA-IR and QUICKI, although a C-peptide and one hour glucose-308 

OGGT were significantly higher in the women classified as GDM (Table 2). Although 309 

these results point to a recovery of GDM after postpartum, the observed differences in 310 

one hour glucose-OGTT and C-peptide, suggest that some of the women could have some 311 

degree of glucose intolerance after delivery. In fact, at 3 months postpartum, 7 GDM 312 

women had altered glycemia. Follow up of the GDM women confirmed that 4 of them 313 

were diagnosed as T2DM within two years after delivery. 314 

3.2. Metabolomics analysis 315 

GC–MS based analysis was applied for plasma metabolomics analysis of control and 316 

GDM women at different times of gestation, as well as one and three months postpartum. 317 

Samples were analysed in randomized order, and quality control samples were included 318 

to control system’s stability, performance and reproducibility of the sample treatment 319 

procedure. After matrix filtration, according to quality assurance (QA) criteria [21], a 320 

total of 37 metabolites were considered for further data treatment. For multivariate 321 

analysis all variables were log transformed and autoscaled. PCA analysis was performed 322 

to investigate multivariate variance in the data, identify sample outliers and for unbiased 323 



16 
 

assessment of data quality. According to Hotelling’s T2 Range based on PCA model, one 324 

strong analytical outlier (control group) was detected and excluded from further 325 

multivariate and univariate calculations. Additionally, supervised regression method, 326 

based on PLS-DA, was used for modelling the differences between disease and control 327 

groups. PLS-DA models shown in Fig. 1 and 2 were described with R2 (explained 328 

variance) and Q2 (predictive variance) values that represent the quality of the model. 329 

First, to explore the evolution of the metabolic profile during pregnancy and after 330 

delivery, PLS-DA models were established separately for control and GDM groups at 331 

each time point (2nd, 3rd trimester and 1 month and 3 months postpartum). Cross-332 

validation tool was used to validate PLS-DA model based on the data derived from the 333 

2nd trimester of pregnancy, with the value of 78±9% of samples classified correctly. As 334 

shown in Fig.1, there was a tendency for group separation between control and GDM 335 

women both in the 2nd and 3rd trimester of gestation and after delivery. We observed that, 336 

despite the metabolic control of the GDM women during gestation, the metabolic profile 337 

of GDM is not fully corrected during late pregnancy. Probably, this could be related to 338 

the role of identified compounds (Table 3) in the molecular mechanisms of the disease. 339 

As this longitudinal follow up study provided information of glycemic condition after 340 

delivery, we explored whether the metabolic profile was different in women that 341 

developed some degree of glucose intolerance or T2DM after delivery, as compared to 342 

those with normal glucose tolerance. Multivariate PLS-DA models limited exclusively to 343 

GDM women showed clear separation between those that were normoglycemic and those 344 

with recognized glycemic alterations at 3 months postpartum (data not shown). Follow 345 

up of these women revealed that 4 of them developed T2DM within 2 years postpartum. 346 

Multivariate PLS-DA models for those selected cases showed clear separation 3 months 347 

postpartum between GDM women that were normoglycemic after pregnancy and those 348 
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with postpartum T2DM (Fig.2A), with the value of 88±10% samples classified correctly 349 

according to cross validation analysis. To find if these women had already an altered 350 

metabolic profile at the time of GDM diagnosis, we performed a retrospective analysis of 351 

the metabolic profile in the 2nd trimester of gestation of these post-partum T2DM women. 352 

As shown in Fig.2B we observed a strong separation of these at-risk samples, with the 353 

80±15% rate of samples classified positively. Multivariate analysis of metabolites in the 354 

2nd trimester of gestation revealed that 2-hydroxybutyrate and 3-hydroxybutyrate 355 

exhibited the stronger variation in those GDM women that 2 years after delivery were 356 

T2DM as compared with those that were GDM and normoglycemic after parturition 357 

(Table 4). Other compounds, such as stearic acid and other fatty acids, also were 358 

significantly different between these groups. Interestingly, we found that these 359 

compounds were also good predictors of glycemic alterations 3 months after delivery in 360 

GDM women, suggesting that they may constitute relevant etiophatogenic factors that 361 

favour or are related with post-partum T2DM in women with previous GDM. 362 

Finally, we performed a ROC analysis with those metabolites that showed the strongest 363 

differences between those GDM women with T2DM after pregnancy and those who did 364 

not have any alteration of glycemic state after delivery. As shown in Fig.3, 2-365 

hydroxybutyrate, 3-hydroxybutyrate, and stearic acid have the best discriminative power, 366 

whereas threitol, oleic, linoleic, palmitic, palmitoleic, and lactic acid did not have an AUC 367 

significantly different from 0.5 (data not shown). These results suggest that women with 368 

GDM at a higher risk of glycemic alteration after delivery exhibit a distinct metabotype 369 

even before the diagnosis of the disease. 370 

Furthermore, although the study should be extended and validated in a higher cohort, our 371 

results suggest that analysis of 2-hydroxybutyrate and 3-hydroxybutyrate in the 2nd 372 

trimester when the OGTT is performed will help to design a more strict control in those 373 
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women at higher risk of T2DM after delivery. The obtained results in our study support 374 

the role of 2-hydroxybutyrate (an organic acid derived from 2-ketobutyrate) as a relevant 375 

predictive biomarker of glycemic alterations, both in human and animal models of type 376 

2-diabetes [22, 23, 24, 25]. In particular, different metabolomics studies have described 377 

an increase in 2-hydroxybutyric acid up to 9.5 years ahead of T2DM presentation [9, 24], 378 

pointing to a role of this compound as an independent and early predictor of glucose 379 

intolerance in humans [9, 26]. It is hypothesized that increased lipid oxidation, oxidative 380 

stress and enhanced glutathione synthesis [27] might explain the observed differences in 381 

2-hydroxybutyrate. Interestingly, in a previous study from our group [14] we found that, 382 

in the 2nd trimester of gestation, plasma 2-hydroxybutyrate concentration was higher in 383 

GDM than in controls. Since it is known that elevation of 2-hydroxybutyrate may occur 384 

in vivo when the formation of 2-ketobutyrate exceeds the rate of its catabolism, we 385 

proposed that a redox imbalance and glutathione synthesis, consistent with increased fatty 386 

acid oxidation, may contribute to elevated 2-hydroxybutyrate in GDM (a graphical model 387 

of metabolic alterations in second trimester in GDM is shown in [14]). This switch to 388 

fatty acid oxidation is further supported by increased levels of 3-hydroxybutyrate, a 389 

ketone body derived from fatty acid oxidation, in GDM women in the 2nd trimester of 390 

gestation [14, 28]. Interestingly, elevated levels of 3-hydroxybutyrate have been 391 

described 3 years ahead of T2DM manifestation [24]. Furthermore, some studies have 392 

shown that circulating stearic acid is associated with higher diabetes risk [29]. 393 

Different studies have shown that GDM and T2DM share many of the risk factors, such 394 

as an increased BMI, age or family history of diabetes [8, 30]. Some of the known T2DM 395 

risk genes are also more frequent in women with previous GDM [30, 31]. Thus, it appears 396 

plausible that the pathogenesis of GDM and T2DM is overlapping [32]. In this scenario, 397 

the observed elevation of 2-hydroxybutyrate, and 3-hydroxybutyrate in GDM, together 398 
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with significantly higher levels in GDM women that developed 2TDM after parturition, 399 

led us to suggest a causal role of these compounds, together with the underlying increased 400 

fatty acid oxidation, in the development of the disease and its complications. Thus, we 401 

hypothesize that among women that develop GDM, there is a specific metabotype that is 402 

more prone to develop T2DM after delivery; 2-hydroxybutyrate and 3-hydroxybutyrate 403 

may serve to identify these women, and may be considered both as potential predictive 404 

and prognosis biomarkers. Establishing different metabotypes at the time of diagnosis of 405 

GDM could provide an opportunity to test and perform dietary, lifestyle, and/or 406 

pharmacological interventions that might prevent or delay the onset of T2DM in the 407 

women at higher risk. 408 

Metabolomics has the potential to determine set of metabolites that are predictive of both 409 

prediabetes and T2DM, even before onset of the disease [12]. Thus, the evidence of 410 

metabolomics benefitting T2DM, and also GDM patients, makes its clinical application 411 

inevitable. Although sample size can be a potential limitation, it should be considered that 412 

nontargeted metabolomics studies typically measure hundreds of metabolites, an 413 

approach that is not realistic or cost-effective for large-scale application. Thus, pilot 414 

studies in metabolomics are of importance before validation on the large cohorts and the 415 

final translation into clinical diagnosis. Considering that this is a pilot study, the sample 416 

size and the statistical power applied, together with a homogeneous sample set and very 417 

strict analytical control, allow us to detect the most relevant associations. Additionally, 418 

our study had several strengths. It represents the first metabolomics longitudinal analysis 419 

of human GDM, not only during pregnancy but also after parturition. It has the advantage 420 

that it is not a cross-sectional study, and every woman was followed up during pregnancy 421 

and postpartum, avoiding the effects of cohort. In fact, we used a well-established cohort 422 

and a serial assessment of metabolomics analysis, which minimized selection and 423 
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ascertainment biases. Together, this supports the value of the obtained results, which can 424 

be considered as potential biomarkers that should be further validated in a targeted study. 425 

4. Conclusions 426 

To our knowledge, this study represents the first non-targeted longitudinal metabolome 427 

wide analyses in plasma of GDM during pregnancy and postpartum. We show that 428 

metabolic control of the patients is associated with a global metabolic improvement, 429 

although some metabolites remained altered in GDM patients as compared to controls. 430 

Furthermore, we have described for the first time that early GDM comprises metabotypes 431 

that are associated with risk of future complications, including postpartum T2DM. As this 432 

is a pilot study, future projects including targeted validation in other cohorts and with a 433 

higher number of patients will allow us to validate the identified biomarkers (mainly 2-434 

hydroxybutyrate and 3-hydroxybutyrate) as prognostic tools to predict the early onset of 435 

diabetic complications in GDM women after delivery. 436 
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Table 1. Anthropometric and metabolic characteristic of the women included in the 577 

study in the second trimester of gestation. 578 

Parameter Control group n = 24 GDM group n = 24 P value 

Age (years) 29.2 ± 2.3 28.3 ± 4.2  ns 

Parity (number) 1.46 ± 0.66 1.46 ± 0.78 ns 

Week of gestation 25.8 ± 1.9 25.6 ± 1.9 ns 

Pre-pregnancy BMI (kg/m2) 22.4 ± 2.5 24.8 ± 5.6 ns 

2nd trimester BMI (kg/m2) 25.4 ± 2.88 27.7 ± 6.0 ns 

Fasting glucose (mmol/L) 4.52 ± 0.29 5.09 ± 0.77 0.0003 

1-h, OGTT (mmol/L) 7.31 ± 1.53 8.95 ± 1.98  0.0013 

2-h, OGTT (mmol/L) 6.37 ± 1.19 9.18 ± 1.0 <0.0001 

HbA1C (%) 4.91 ± 0.33 5.2 ± 0.4 0.0199 

Insulin (pmol/L) 93.1 ± 33.7 88.5 ± 40.2 ns 

C-Peptide (pmol/mL) 0.57 ± 0.25 0.74 ± 0.8 ns 

HOMA-IR 2.52 ± 1.17 2.73 ± 1.49 ns 

QUICKI 0.55 ± 0.17 0.55 ± 0.13  ns 

Triacylglycerides (mmol/L) 1.68 ± 0.51 2.08 ± 0.65 0.0081 

Total cholesterol (mmol/L) 6.44  ± 1.12 6.63  ± 0.74 ns 

LDL-cholesterol (mmol/L) 3.37 ± 1.01 3.66 ± 0.93  ns 

HDL-cholesterol (mmol/L) 2.37 ± 0.40 2.21 ± 0.45 ns 

CRP (μg/mL) 3.95 ± 3.49 5.09 ± 4.25  ns 

Systolic BP (mm Hg) 117.0 ± 7.2 115.0 ± 11.3 ns 

Diastolic BP (mmg Hg) 72.1 ± 8.4 72.8 ± 9.6 ns 
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Presented data are mean ± SD. Statistical comparisons assuming equal (t test) or unequal 579 

variance (Welch’s t test) or non-parametric Mann-Whitney test were performed as 580 

appropriate. Results were considered significant when P < 0.05.  581 
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Table 2. Anthropometric and metabolic characteristic of the women 3 months after 582 

delivery.  583 

Parameter Control group n = 24 GDM group n = 24 P value 

3 months postpartum BMI (kg/m2) 38.1 ± 4.67 41.14 ± 9.76 ns 

Fasting glucose (mmol/L) 4.75 ± 0.41 5.53 ± 2.59 ns 

1-h, OGTT (mmol/L) 6.24 ± 1.41 9.05 ± 4.42 <0.0001 

2-h, OGTT (mmol/L) 5.17 ± 0.94 7.14 ± 6.04 ns 

HbA1C (%) 5.23 ± 0.42 5.51 ± 0.83 ns 

Insulin (pmol/L) 67.17 ± 30.0 73.22 ± 49.03  ns 

C-Peptide (pmol/mL) 0.57 ± 0.30 1.0 ± 0.78 0.0118 

HOMA-IR 46.16 ± 21.13 56.6 ± 42.82 ns 

QUICKI 0.63 ± 0.08 0.62 ± 0.11 ns 

Triacylglycerides (mmol/L) 1.69 ± 1.2 2.37 ± 2.07 ns 

Total cholesterol (mmol/L) 4.84 ± 0.83 5.1 ± 0.95 ns 

LDL-cholesterol (mmol/L) 2.81 ± 0.75 3.0 ± 1.02 ns 

HDL-cholesterol (mmol/L) 1.85 ± 0.5 1.78 ± 0.38 ns 

CRP (μg/mL) 2.9 ± 4.45 1.76 ± 1.78 ns 

Presented data are mean ± SD. Statistical comparisons assuming equal (t test) or unequal 584 

variance (Welch’s t test) or non-parametric Mann-Whitney test were performed as 585 

appropriate. Results were considered significant when P < 0.05. 586 

587 
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Table 3. List of metabolites identified in plasma by GC-MS that were significantly 588 

different between control and gestational diabetes women at different times of 589 

pregnancy and postpartum.  590 

Identified  

compounds 

Statictical  

significance 

GDM vs. C  

(% of change)  

RSD in QC  

(%) 

Second trimester of gestation 

Glycerol VIP/ JK/* 29 12 

2-hydroxybutyrate VIP/ JK/* 51 12 

3-hydroxybutyrate VIP/ JK/* 81 17 

Linoleic acid VIP/ JK/* 25 17 

Oleic acid VIP/ JK 21 9 

Palmitoleic acid VIP/ JK/* 37 14 

Palmitic acid VIP/ JK 13 7 

Third trimester of gestation 

Glycerol VIP/ JK 17 12 

Palmitic acid VIP 13 7 

Oleic acid VIP 13 9 

1 month postpartum  

Lactic acid VIP/ JK 22 11 

Proline VIP 33 26 

3 months postpartum 

2-hydroxybutyrate VIP/ JK 37 12 

3-hydroxybutyrate VIP 128 17 

2-ketoisocaproic acid VIP/ JK -22 16 
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Gluconic acid VIP/ JK 25 21 

Palmitic acid VIP 10 7 

Linoleic acid VIP 19 17 

Oleic acid VIP 15 9 

Glycerol VIP/ JK 13 12 

Percent (%) change represents the increase (+) or decrease (−) of the mean in the 591 

gestational diabetes group with respect to the control group, the sign indicates the 592 

direction of the change. When necessary data were transformed by applying a log(base 593 

2) in order to approximate a normal distribution. Statistical significance reported as the 594 

value of multivariate analysis from Variable Importance in Projection (VIP); VIP > 1.0 595 

cutoff was applied. Jack–Knife multivariate statistical analysis (JK) with confidence 596 

intervals estimative, 95% confidence level.* data statistically significant according to 597 

univariate analysis where P <0.05 was considered significant.   598 
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Table 4. List of metabolites identified in plasma by GC-MS that are significantly 599 

different in the second trimester of pregnancy and 3 months postpartum between 600 

GDM women that were diagnosed T2DM within two years after delivery 601 

(GDMT2DM) and those with normoglycemia (GDM-C).  602 

Identified 

compounds 

Statictical 

significance 

GDM-T2DM vs. GDM-C 

(% of change) 

RSD in QC 

(%) 

GDM: Second trimester of gestation 

2-hydroxybutyrate VIP/ JK/* 94 12 

3-hydroxybutyrate VIP/ JK/* 249 17 

Stearic acid VIP/ JK/* 34 14 

Palmitic acid VIP/ JK 34 7 

Palmitoleic acid VIP/ JK 40 14 

Oleic acid VIP/ JK 38 9 

Linoleic acid VIP/ JK 19 17 

Lactic acid VIP/ JK -41 11 

Threitol VIP/ JK -23 18 

Sorbitol JK/* 49 11 

GDM: 3 months postpartum 

2-hydroxybutyrate VIP/ JK/* 161 12 

3-hydroxybutyrate VIP/ JK/* 1511 17 

Palmitic acid VIP/ JK/* 96 7 

Palmitoleic acid VIP/ JK 160 14 

Oleic acid VIP/ JK/* 177 9 

Stearic acid VIP/ JK/* 49 14 
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Linoleic acid VIP/ JK/* 125 17 

Pyroglutamic acid VIP/ JK -25 17 

Citric acid VIP/ JK -33 26 

Lauric acid VIP/ JK/* 71 26 

Hydroxymalonic 

acid 

* 49 26 

Lactose VIP/ JK -71 15 

Serine VIP/ JK/* -36 21 

Threonine VIP/ JK/* -35 20 

Glycerol VIP/ JK 79 12 

Percent (%) change represents the increase (+) or decrease (−) of the mean in the GDM 603 

T2DM group with respect to the GDM-control group (GDM-C). When necessary, data 604 

were transformed by applying a log(base 2) in order to approximate a normal distribution. 605 

Statistical significance reported as the value of multivariate analysis from Variable 606 

Importance in Projection (VIP); a VIP > 1.0 cutoff was applied. Jack–Knife multivariate 607 

statistical analysis (JK) with confidence intervals estimative, 95% confidence level. * data 608 

statistically significant according to univariate analysis where P <0.05 was considered 609 

significant.  610 
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FIGURE LEGENDS 611 

Figure 1. Multivariate PLS-DA plots of plasma metabolomic profiles at various 612 

times during and after pregnancy for control (●) and GDM women (▲). A. Second 613 

trimester of gestation (R2=0.68, Q2=0.13). B. Third trimester of gestation (R2=0.69, 614 

Q2=-0.11). C. One month after delivery (R2=0.61, Q2=-0.21). D. Three months after 615 

delivery (R2=0.38, Q2=-0.21). 616 

Figure 2. Multivariate PLS-DA plots of plasma metabolomic profiles in the second 617 

trimester of gestation and 3 months after delivery for GDM women that are 618 

normoglycemic after pregnancy (▲) and those with confirmed postpartum diabetes 619 

mellitus (▼). A. Three months after delivery (R2=0.87, Q2=0.55). B. Second trimester 620 

of gestation (R2=0.88, Q2=0.01). 621 

Figure 3. ROC curves of selected metabolites in the second trimester of gestation, 622 

including GDM women that are normoglycemic or those with confirmed 623 

postpartum diabetes mellitus. For each metabolite sensitivity is plotted against 100- 624 

specificity. A. 2-hydroxybutyrate (AUC: 0.90, p= 0.016); B. 3-hydroxybutyrate (AUC: 625 

0.867, p= 0.027); C. stearic acid (AUC: 0.90, p= 0.016); D. sorbitol (AUC: 0.83, p= 626 

0.046). 627 


