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Abstract 

Fat accumulation during pregnancy as result of both hypcrphagia and increased lipid 
synthesis takes place during the first two-thirds of gestation, whereas it declines during 

the last third. as a consequence of enhanced adipose tissue lipolysis. This change together 
with a decrease in adipose tissue lipoprotein lipase (LPL) activity causes a net enhanced 

breakdown of fat stores, which is facilitated by the insulin-resistant condition that is 
normally present during late pregnancy. The main fate of the lipolytic products is 

maternal liver. where they arc re-esterified for the synthesis of triacylglycerols (TG), 

which are released into the circulation as part of very low density lipoproteins (VLDL). 

The abundance of VLDL-TG in the presence of an increase in cholesteryl ester transfer 
protein activity taking place at mid gestation contribute to the accumulation ofTG in the 

lipoprotcin fractions of higher density, LDL and HDL. Maternal hyperlipidemia is 
associated with the predominance of small and dense LDL-particlcs, which arc more 

susceptible to oxidation. The higher levels of lipid peroxides during late pregnancy arc 
accompanied by higher levels of vitamin E, which values correlate with maternal 
hyperlipidemia. Although the lipolytic activity of LPL seems to play a significant role in 

the uptake of u-tocopherol in certain tissues, like mammary gland around parturition, this 

is not the case in others, where LPL may function as a cell surface proteoglycan­
anchored bridge for lipoprotcins, facilitating the uptake of LDL a-tocophcrol. Other 
mechanisms exist for the tissue uptake of a-tocophcrol, including the receptor-mediated 
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lipoproti:in cndocytosis, the LDL receptor pathway or the scavenger receptor class B type 
I. The ATP-binding cassette transporter A I has been also implicated in the supply of u­
tocopherol in the feto-matemal unit. Despite that the a-tocopherol transfer protein seems 
to act in conjunction with lipoprotein receptors, lipolytic enzymes and fatty acid binding 
proteins in the placenta to facilitate the transfer of a-tocopherol between maternal and 
feta) circulation, its rate is very low, justifying the low levels of vitamin E in tetal 
plasma. The induction of LPL activity in mammary gland around parturition contribute to 
both the disappearance of maternal hyperlipidemia and the efficient uptake by mammary 
gland of circulating u-tocopherol, allowing its availability in the suckling newborn. 

Introduction 

Uncomplicated pregnancy in women is associated to hypcrlipidcmia [4; 10; 75; 94] as 

well as an increase in serum levels of lipid peroxides [21; 96; 133; 149]. Also during normal 

pregnancy the higher levels of both lipoproteins and lipid peroxides are accompanied by 

enhanced levels of vitamin E (a-tocopherol) (52; 96; 137; 140], which is a naturally 

occurring lipid-soluble antioxidant that participates in protecting membrane and blood 

lipoprotein particle lipids from autooxidation[ 17], being considered the most important lipid­

soluble antioxidant in humans[65). This protective effect of vitamin E results from both its 
preferential localization in lipid phases and its capacity at breaking the free radical-initiated 

lipoperoxidation chain reactions. Resides, several tocophcrols have special properties that arc 

unrelated to their antioxidant capacity. The first one may be considered its role in animal 
fertility initially proposed by Evans and Bishop[31), who discovered this essential factor for 

animal reproduction. Female rats fed on a vitamin E free diet are sterile or resorb their 

fctuses, whereas these phenomena can be reversed by administration of vitamin E to pregnant 

animals[32]. The mechanism by which a-tocophcrol allows pregnancy to proceed until term 

still remains unknown. Plasma levels of u-tocopherol in human fetuscs arc normally lower 

than those in their mothers, although levels rise towards the end of pregnancy[8; 147]. 

Premature infants are at risk of "oxygen radical disease"' due to their exposure to 

supplemental oxygen and/or to a decrease in their antioxidant defences systems [37; 114; 
122]. 

In this chapter, we first examine the mechanisms underlying the hyperlipidemia 

characteristic of normal pregnancy. so that maternal tendencies to have an oxidative stress 

condition may be understood. We also examine the changes of vitamin E metabolism during 

pregnancy, analyzing the mechanisms of its tissue uptake and its potential implications for 

the mother and her offspring, including its uptake by mammary gland around parturition, in 

preparation for lactation. 

Maternal Lipid Metabolism and Oxidative Stress 

Two consistent manifestations of altered maternal lipid metabolism during normal 

gestation are the accumulation of lipids in early-pregnant maternal tissues l 56; 135) as result 
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of major changes in adipose tissue metabolism and the development of maternal 
hyperlipidaemia [4: 10; 75; 94). 

Adipose Tissue Metabolism 

fat accumulation during pregnancy occurs in both women [56; 68; 135] and 
experimental animals [9; 8 I; 82; 95). The accumulation of maternal fat depots takes place 
during the first two-thirds of gestation but stops or even declines during the last third [ 49; 56; 
81; 12 I], as a consequence of enhanced adipose tissue lipolytic activity. 

Body fat accumulation during early pregnancy seems to be the result of both hyperphagia 
[98; 106] and increased lipid synthesis [51; 104). 

Changes in adipose tissue lipoprotein lipase (LPL) activity could be a mean'- hy which 

fat aLLUrnulatiu11 i:.. LUlll1UllcJ Ju1i11g early pn:gnanLy. This t:UL)'lllt:, p1i.:sc11l i11 the Lapilla1y 

endothelium of extra-hepatic tissues, hydrolyzes triacylglycerols circulating in plasma in the 
form of triacylg.lyccrol-rich lipoproteins [ 15]. and the hydrolytic products. fatty acids and 
glycerol, are mostly taken up by the subjacent tissue [80). In this way, LPL activity is a 
prerequisite for the uptake of circulating fat by adipose tissue. Whereas during mid gestation 
LPL activity in adipose tissue is either slightly increased (50; 73] or unchanged [4; 88J, 
during late pregnancy, however, LPL activity in rat adipose tissue has consistently been 
found decreased [49] [43: 43: 102: 108). Besides. postheparin LPL activity has also been 
found to decrease in pregnant women during the third trimester of gestation [4]. 

Thus. fat uptake by adipose tissue decreases during late pregnancy, and this change. 
together with the enhanced lipolytic activity (see below), results in the net accelerated 
breakdown of fat depots during the last trimester of pregnancy. actively contributing to the 
development of maternal hyperlipidemia. 

An increased Iipolysis of adipose tissue has been found both in women and in rats during 
the last third of gestation [30; 35; 74; 120; 143]. The products of adipose tissue lipolysis, 
non-estcrificd fatty acids (NEF A) and glycerol are released, in large part, into the circulation. 
Since the placental transfer of these products is quantitatively low [48), their main fate is 

maternal liver [86 J where, after conversion into active forms, acyl-CoA and glycerol-3-
phosphate respectively, they are rc-esterified for the synthesis of triacylglyccrols that arc 
released into the circulation as part of very low density lipoprotcins (VLDLs). The insulin 
resistant condition of late pregnancy contributes to both the increased lipolysis of fat stores 

[ 109] and the increased VLDL production. although for the later, the enhanced cstrogcn 
concentration at late pregnancy seems to be its major activator [72]. 

Maternal Hyperlipemia 

The active lipolytic activity of maternal adipose tissue during late gestation is associated 
with the development of hyperlipidaemia, mainly corresponding to rises in triacylglycerols. 
with smaller rises in phospholipids and cholesterol in the circulation (72). Although the 
greatest increase in plasma triacylglyccrols corresponds to VLDL there is also an enrichment 
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of triacylglycerols in ~ther lipoprotein fractions that nonnally do not transport them, like low 

density lipoprotcins (LDL) and high density lipoproteins (HDL) [4]. This increase in plasma 

VLDL triacylglycerols during gestation results from enhanced production by the liver [ 141: 

142] and decreased removal from the circulation as consequence of reduced adipose tissue 

LPL activity [4; 88]. 

The abundance of VLDL triacylglycerols in the presence of an increase in cholesteryl 

ester transfer protein (CETP) activity taking place at mid gestation [4; 57] contribute to the 
accumulation of triacylglycerols in the lipoprotein fractions of higher density. LDL and HDL 

[ 4; 94]. Another factor contributing to this same effect is the decrease in the hepatic lipase 

activity which also occurs during late pregnancy [4]. The decrease in this enzyme activity 
decreases the conversion of buoyant HDL2 triaeylglyeerol-rich particles into small HDL3 

triacylglycerol-poor particles, allowing a proportional accumulation of the fonners [4]. These 
interactions addressed lo develop maternal hyperlipidemia during late pregnancy arc 

M.l11.:111alil-ally :.ummariL.cu in figun.: I. 
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Figure I Schematic representation of lipoprotein metabolism during late pregnancy. indicating the 

mechanism for increased triacylglycerol (TG) content in all the lipoprotein frdctions. , .· enhanced 

pathway: - ·· inhibited reaction. NEFA = non-esterified fatty acids; CE'° cholesterol esterified; CE7P 

choh:~h.:ryl ester transfer protein: LPL= lipoprotein lipase; VLDL = very low density lipoproteins: LDL ~ 
low density lipoproteins; HDJ. · high density lipoproteins. Other details in text. 
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Oxidative Stress 

Maternal hyperlipidemia during late pregnancy is also associated with the predominance 

of small and dense LDL-particlcs [I 12; 119]. These small and dense LDL-particles have been 

shown to be more susceptible to oxidation (26]. Hyperlipidcmia and the occurrence of small 

and dense LDL particles during late pregnancy might increase the oxidative damage, and an 

increase of serum lipoperoxides has been reported (21; 96; 133]. The higher levels of lipid 

peroxides during late pregnancy arc accompanied by higher levels of vitamin E [52; 96; 137; 

140]. The increased levels of vitamin E seems to be responsible for the increase in the 
oxidative stability ofLDL with progressing gestation that has been reported [25]. 

Metabolism of Vitamin E in Pregnancy 

a-Tocopherol in Plasma 

Plasma concentrations of a-tocopherol arc well known to increase in normal pregnancy 

with advancing gestation [25; 52; 96; 137; 140]. This change correlates with maternal 

hyperlipidemia [52) and is also accompanied by the increase of lipid peroxides, although the 
increase in a-tocopherol is more pronounce in such a way that a-tocopherol/lipid peroxide 

ratio increases with progressing gestation [25 ]. 
The increase in vitamin E levels during pregnancy does not seem to be due to changes in 

dietary intake. Analysis of food frequency questionnaires has not reported enhanced dietary 
vitamin E intake during the course of pregnancy I 14; 14: 10 I: 116]. Indeed, it has been 
proposed that the increases of vitamin E in pregnancy is a consequence of the increase of 

substrate available for lipid peroxidation [25], which agrees with the disappearance of 
increments when pregnant women plasma vitamin E levels arc adjusted by lipid values [52]. 

The lipophilic nature of a-tocopherol and the absence of a specific binding protein in 

blood forces that its intertissue traffic occurs via plasma lipoproteins. In fact, as summaryzcd 
in figure 2, the metabolism of a-toeopherol is closely linked to the metabolism of lipoproteins 

(67; 127; 131]. and therefore it would be expected that changes in lipoprotcin metabolism 
taking place during pregnancy would also affect in the same direction the metabolism of a­

tocophcrol. However, although vitamin E in plasma may parallel lipoprotein metabolism [47] 

and could be affected by the changes of lipoprotein metabolism taking place during 

pregnancy [46; 72]. its tissue uptake and intracellular metabolism seems to have specific 

characteristics. a-Tocopherol circulates in the amphipatic outer layer of lipoproteins. which 

allows the spontaneous exchange or transfer of a-tocopherol between lipoproteins and cells 
(41; 91; 129). However, protein-facilitated transfer appears to play an important role in 

controlling its distribution between lipoprotein classes in vivo [87]. 
Rapid exchange of a-tocopherol between HDL and apoB-containing lipoproteins is 

facilitated by the plasma phospholipids transfer protein (PL TP) [77] (figure 2) which also 

facilitates the exchange of a-tocopherol between different lipoproteins and cells, including its 

net transfer to endothelial cells [27). To our knowledge no reports on PL TP levels in 
pregnancy has been reported, but this protein is related to the cholesterol ester transfer 
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protein (CETP)[SS], which activity is enhanced in pregnant women at the second trimester of 

gestation l 57 J. Besides, PL TP is known to play a major role in the remodelling of HDL by 

facilitating their enrichment in triacylglycerols [ 117], and such enrichment is a specific 

characteristic in HDLs of late pregnant women [4J. which further would indicate its 
enhancement during late pregnancy. 
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Figure 2. Schematic representation of vitamin E metabolism in late pregnancy. a-TOH= a-tocopherol; 

y-TOH y-tocopherol: /V Ef A= non-estcri fied fatty acids; PL TP ' phospholipid transfer protein; LPL~ 
lipoprotcin lipase; VI.DI.= very low density lipoproteins; IDL ~ intennediate density lipoprotcins; 

LDL 00 low density lipoproteins; 1/DL= high density lipoproteins: SR-BI= scavenger receptor class H 

type I; LDLR LDL fCl:cptor: I/DLR= HDL receptor. Other details in text. 

Tissue Uptake 

LPL attached to the surface of capillary cndothelium has been proposed to play a role in 
the delivery of a-tocophcrol to extrahcpatic tissues, carried in triacylglycerol-rich 

lipoprotcins. chylomicrons. and very-low density lipoproteins (VLDL) ( 130). However, LPL 

activity docs not play a major role in the uptake of a-tocophcrol in white adipose tissue 

during pregnancy by two main reasons: i) During late pregnancy, LPL activity in adipose 
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tissue is consistently decreased [ 4; 43; 69; 88; I 02; l 08] and ii) it has been directly shown in 

the rat that the uptake of n-tocopherol in adipose tissue is independent of changes in LPL 

activity (90]. Other mechanisms besides its role hydrolyzing triacylglycerols in chylomicrons 

and VLDL could make LPL to contribute to the tissue uptake of n-tocopherol and cannot be 

discarded. LPL can function as a cell surface proteoglycan-anchored bridge for lipoproteins, 
and this action seems to play a major role in the delivery of n-tocopherol to different tissues. 

In fact, tissue specific overexpression of LPL in skeletal muscle of transgenic mice led to 

increased muscle a-tocophcrol concentration [I 13], and selective uptake of LDL a­

tocophcrol is enhanced in the presence of LPL requiring the presence of intact heparin-sulfatc 
proteoglycans. but not the lipolytic activity of the enzyme (38]. No information concerning 

how this mechanism of tissue a-tocopherol uptake during pregnancy exists, but the low pre­
and post-heparin LPL mass or activity consistently found during pregnancy in women [69: 

70] w0uld point to an overall deficiency of I PI that hardly could facilitate tissue uptake of 
u-1ucuµl 1t:1 ul. 

The receptor-mediated lipoprotein endocytosis and/or the selective lipoprotein a­
tnrnphernl uptake could actively contribute to the availability of a-toenphernl in maternal 
tissues. 

The LDL receptor (LDLR) pathway has been involved in cellular a-tocopherol uptake 
from LDL [ 125; 128), although it has been considered not essential for maintenance of 
nom1al tissue vitamin E levels due to the redundant function of other lipoprotein receptors 

fR7]. 
Another mechanism for tissue a-tocopherol uptake from circulating lipoproteins has been 

proposed to be its selective uptake without the net uptake of lipoprotein holoparticles. This is 
carried out together with other lipoprotein-associated lipids via the scavenger receptor class 8 

type I (SR-B 11. which is a cell surface glycoprotein that was described as a HDL receptor for 
cellular selective cholesteryl ester uptake [I]. By working with HepG2 hepatoma cells, it was 
initially shown that radiolabcled a-tocophcrol is incorporated into the cells through selective 
uptake from HDL [39], and by working with type II pneumocytes it was latterly demonstrated 

that HDL is the most potent lipoprotein-associatcd vitamin E donor, followed by VLDL and 
LDL [76 ). It was also found in rat liver and HepG2 cells that the expression of SR-BI is 

down-regulated by the vitamin E status, in the sense that depletion of vitamin E causes its 
induction. that is partially reversed by vitamin F. enrichment [144]. Concerning reproductive 

physiology. SR-8 I deficiency in mice is associated to female infertility and decreased 
development of prc-implantational embryos [93; 132). probably as result of impaired delivery 

of a-tocophcrol to ovaries causing a pro-oxidative stress condition. a-Tocopherol 

supplementation in SR-BI knockout female mouse docs not restore their fertility [ 1241 

suggesting that this receptor is an essential component in facilitating the delivery of 

a-tocopherol to the key reproductive tissues. This receptor seems to play a critical role in the 

post-implantational embryonic development by controlling the transfer of lipoprotein 
a-tocopherol from maternal circulation into the growing embryo. It is expressed in both 

maternal (e.g., dccidual and trophoblast cells) and embryonic (yolk sac visceral endodcrm 
and placental chorionic laberynth) sides of the maternal-feta! interface (44; 1461, contributing 
to the efficient antioxidant defcnsc required for normal intrauterine fctal development. 
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The ATP-binding cassette transporter A I (ABCA I l is a protein that belongs to a large 

family of conserved transmembrane proteins that use A TP as an energy source that drives the 

transport of a wide variety of molecules across the plasma membrane of living cells [53]. 

This transporter interacts preferentially with lipid-poor apoA-1, allowing its lipidation by 

thereby fonning nascent HDL [ 139]. In addition to apoA-1, ABCA l interacts with other 

apolipoproteins with amphipathic helical motifs and induce lipid efflux by the same 

mechanism (134]. It has been also proposed that ABCAl is an apoA-1 receptor that upon 

binding induces the transfer of cholesterol and phospholipids [34; 99; 138]. Besides. recently 

it has been demonstrated the role of ABCA I in cellular apolipoprotein A-I-mediated 

a-tocopherol secretion [100]. ABCA 1 is ubiquitously expressed, with high expression levels 

in placenta and feta! tissues [78]. Besides, it has been reported that in ABCA I knockout 

mice, severe placental malformation occurred [23], and it has been proposed that these 

placental abnonnalities are due to inadequate a-tocopherol supply in the feto-maternal unit 

[65]. 

Placental Transfer 

a-Tocopherol transfer protein (a-TTP) was first described by Catignani et al. [22] as a 
hepatic intracellular protein that transports cytosolic a-tocophcrol. This protein selectively 

recognizes u-tocopherol. with lower affinities of various tocopherol analog.s (54]. Although 

a-TTP was first described as being S())ely present in the liver, it is now accepted that is 

expressed in several tissues, including in pregnant mouse uterus and human placenta (60; 63; 

64}. The fact that RRR-u-tocopherol. which is the u-tocopherol stereoisomer that is 

preferentially transported by u-TTP, is preferentially transported to cord blood (2] and that 

impaired fertility is observed in animals lacking the u-TTP[ 45) highly indicate that u-TTP is 

important for the transport of u-tocopherol in the feto-maternal unit. a-Tocopherol 
concentration in plasma of human ictuses arc lower than in their mothers, but rises towards 

the end of pregnancy (8; 147). It was also found that RRR-u-tocopherol is enriched by a 
factor of 3.42 at its passage through the human placenta [2 ). These antecedents were follow 

by the recent findings of a-TTP in the trophoblastic cells [63) as well as in various other 

compartments of the human placenta at term. including the interface between the maternal 

and fctal circulation, which is composed of the trophoblast and the fctal capillaries' 

cndothelium [97]. It has been therefore proposed that in these cells a-TTP might be in charge 

of the stereo-selective transfer of maternal VLDL-bound RRR-a-tocophcrol to the fctal 

plasma [2]. VLDL from maternal plasma does not directly cross the placenta [48]. It is taken 

up by a very low-density lipoprotein-rcccptor (VLDLR) at the syncytiotrophoblast, which 

mRNA expression in the chorionic villi parallels that ofa-TTP [145). RRR-a-tocopherol may 

also reach the placenta associated to other lipoproteins besides VLDL, since the placenta 

expresses receptors for all them: e.g. LDL-rcceptor related protein and LDL- and scavenger­

receptors [3; 13; 103; 118; 146) and HDL-reccptors [79; 136: 146). Besides, the placenta has 

lipolytic activities to partially breakdown the lipid moieties of the lipoproteins that have been 

taken up: e.g. LPL [ 12: 40; 111 I, phospholipase AJ ( 16: 33] and triacylglycerol lipase [II: 66; 

85). The placenta also contains different fatty acid binding proteins: e.g. plasma membrane 
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fatty acid binding protein (p-FABPpm) ll 9; 20], heart and liver fatty-acid binding proteins 

( H-FABP and L-F ABP) l24 J and fatty acid translocase (FAT) and fatty acid transport protein 

(FATP) [28; 29; 42; 71]. These binging proteins handle the long-chain fatty acids that are 

released by those lipolytic enzymes, and the fatty acids are finally diffused to the fetal size. 

Since it has been suggested that a-TTP in the placenta is a transport- rather than a storage­

protein [97], it is proposed that it acts in conjunction with those lipoprotein receptors, 

enzymes and binding proteins to facilitate the transfer of a-tocopherol between the maternal 

and fetal circulation. 

Despite the existence of these processes, efforts to investigate the actual kinetics of the 

transfer of vitamin E by isolated human placental systems has found that although it is 

specific for natural RRR-a-tocopherol rather than any other form of vitamin E, its rate is very 

low, being only 10% of passively transferred L-glucose [115]. This justifies the consistent 

finding of much lower a-tocopherol levels in fctal pla<:ma and red blood erll-.: than in 

malt:mal [ 18; 52; 59; 89; 107], in<licaling an insuffo.:it:111 vitamin E supply fur Lhl.! fotus 

Lhroughout gestation. 

Antioxidant Status in Fetus and Newborn 

Besides the need for fatty acid protection against autoxidation in the fctus and the low 
vitamin E level in fetal plasma. the situation is more critical in the early extrauterine life. 

when defence systems against reactive oxygen species are less well developed [ 6; 126; 148; 
150] and the newborn is submitted to an increased oxygen concentration. This interpretation 

agrees with the double thiobarbituric acid reactivity fi.mnd in neonatal red blood cells as 

compared to adults (58], suggesting a greater pcroxidation damage in the fonners. The 

situation is further aggravated in premature infants even without major clinical symptoms, 

that are born with adequate vitamin E levels to respect to their gestational ages which arc 

rapidly depicted, if no vitamin E supplement is applied l 61 : 62: 92]. Chronic lung disease, 

intraventricular hemorrhage, necrotizing enterocolitis and retinopathy of prematurity are 

important complications of premature infants, which ctiology has been associated to the 

oxidative stress (37; 114; 122]. 

Vitamin E in Mammary Gland 

Under normal conditions, a significant increase in plasma vitamin E levels occurs atier 

commencement of oral feeding, which confinns that a substantial amount of vitamin E is 
supplied from breast milk 136; 105]. Vitamin E concentration in breast milk is high, being 

even higher in colostrum than in mature milk [7]. The way how this vitamin E is taken up by 
mammary gland around parturition deserves attention. because it occurs in parallel with the 

disappearance of the maternal hyperlipidemia present during late pregnancy [4: 941. 
Throughout this same process polyunsaturated fatty acids mainly circulating in late pregnant 

maternal plasma in the fonn of lipoprotcin-triacylglyccrols arc also taken up by mammary 

gland for milk synthesis. 
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The rapid decline of maternal hypcrtriacylglyceridemia around parturition coincides with 

a rapid increase in the mammary gland LPL activity and mRNA expression, whereas LPL 

activity in adipose tissue remains low [ I 08; 11 O]. These combined changes facilitate an 

enhanced uptake of circulating triacylglycerols by the mammary gland instead of being stored 

in adipose tissue (5 j. A similar fate has been proposed for a-tocopherol, because adipose 

tissue constitutes its main store in the body [83], shows the highest LPL activity under 

nonpregnant conditions[ 15], and u-tocophcrol becomes highly enhanced in mammary gland 

around parturition, as suggested by its increased concentration in colostrum as compared with 

mature milk[7; 84; IOI]. Direct studies in rats under basal conditions and after oral 

a-tocophcrol load in late pregnant rats and at mid lactation with or without litter removed 

have shown that contrary to what occurs in adipose tissue, where LPL activity does not seems 

to play a role in the uptake of circulating a-tocopherol, during late pregnancy and lactation, 

changes in LPI activity in the mammary gland greatly modulate the uptake of n-tocopherol 

Ly tl11.:: glauJ[90J. 

Concluding Considerations 

Vitamin E metabolism play a key role in the metabolic adaptations taking place during 

pregnancy. In the mother. plasma levels of u-tocopherol parallel the development of her 

hypcrlipi(.kmia, which is mainly due to increments in triacylglycerols associated to all the 

lipoprotcin particles. In fact. since under non pregnant conditions u-tm:ophcrol in plasma is 

carried in all the lipoprotein particles [ 123], it is expected that a similar distribution occurs in 

pregnancy. We do know that polyunsaturated fatty acids in plasma are mainly associated to 
these lipoproteins (46]. and therefore the increase in plasma levels of u-tocophcrol protect 

from their peroxidation. Such protection is only partially attained, since an increase in 

maternal scmm lipopcroxidcs has been consistently detected during late pregnancy [ 21: 96; 

133]. Tissue a-tocophcrol uptake is facilitated by LPL, LDLR and/or SR-BI, which 

expression varies in different directions during pregnancy in specific different tissues, and 

therefore would determine the fate of circulating a-tocophcrol. Special attention deserves the 

placenta, which besides needing the ABCAI protein for its normal development, contain a­

TTP. which in conjunction of lipoprotein receptors, lipolytic enzyme activities and fatty acid 

binding proteins, facilitates the matemal-fetal transfer of u-tocopherol. Such transfer is 

carried out at very low rate, causing that feta) plasma a-tocophcrol levels are much lower 

than in maternal plasma. a condition that is aggravated in the early extrauterinc life. This 

situation is compensated during suckling by the high amounts of 11-tocopherol in colostrums 

and mature milk. In mammary gland, the induction of LPL around parturition contribute to 
both the disappearance of maternal hyperlipidemia and the efficient uptake of circulating 

n-tocophcrol. which by this way warrants its availability in the suckling newborn. 
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