
Sistemas de Información Hospitalarios

Máster en Ingeniería Biomédica

Rodrigo García Carmona

Assignment 2: Development of a Web Application

Due date: -
Weight: 20% of practical assignments' score

This assignment is mandatory. Note that:

Section ?? explains what items should be delivered to the professor.

No assignments will be accepted past the due date.

This assignment is mandatory and therefore must be delivered to the professor. This assign-
ment will contribute to the �nal score of the course.

1. Introduction

The aim of this assignment is to serve as a brief introduction to the setup and development
of three-tier web applications using the Java programming language and the Play framework.
Play has been chosen because it's easy to use and con�gure, follows modern web development
paradigms and can be programmed with Java, a language most students are already familiar
with.

This assignment is split in two parts. During the �rst one, you will download and con�gure
an already existing web application, so you can test it using your own computer. In the second
part, you'll modify the aforementioned application, to add features not already present.

1.1. Required Software Installation

Before tackling this assignment you must install the following software items:

Java SDK: Can be installed from the o�cial Java website1. You need to download version
8 or newer, and we strongly recommend that you choose the 64 bit version (ask the professor
if your computer supports it if you don't know). It's possible that you'll also need to add
the �javac� command to the system path. If you don't know how to do this, again, ask the
professor.

Node.js: Can be installed from the o�cial Node.js website2. Although you are not going
to use Node.js as a web application framework, Play can use the Node.js JavaScript engine,
which is faster than the stock one.

IntelliJ IDEA Community: Can be installed from the o�cial IntelliJ website3. This is
the Java IDE (Integrated Development Environment) that you will use to program you
web application.

The Play framework itself will be installed with the provided sample web application.

2. Setup of a Play Framework Web Application

In this section you'll setup and launch an already existing web application.

1http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
2https://nodejs.org/en/download/
3https://www.jetbrains.com/idea/download/

1

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://nodejs.org/en/download/
https://www.jetbrains.com/idea/download/

Sistemas de Información Hospitalarios

Máster en Ingeniería Biomédica

2.1. Download the Application's Source Code

Go to https://github.com/rgarciacarmona/fisio-repo, click on the green Clone or down-
load button at the right, and then select Download ZIP. You'll end with a ZIP �le that you should
extract to the folder you want to work with. Any folder is OK. We'll refer to this location in this
document as the "project folder". Also, all relative routes to folders and �les in this document
are assumed to be inside it.

Alternatively, if you have Git installed in your system and know how to use it, you can clone
the web application's Git project to your local machine.

2.2. Con�gure the Web Application

Some features of the web application must be con�gured before it can be properly launched.
Since you are going to run it in your local machine, you should make the application use an
in-memory database. This is not appropriate for a production environment, but for testing its
�ne.

Using a text editor (not a word processor) the �le �conf/application.conf� and search for the
following lines:

Amazon RDS parameters

default.url = "jdbc:mysql://DBURL/fisiorepo?characterEncoding=UTF-8"

default.driver = com.mysql.jdbc.Driver

default.username = fisiorepo

default.password = PASSWORD

H2 Database parameters

default.driver = org.h2.Driver

Choose one of the following two

In memory database

default.url = "jdbc:h2:mem:play"

Local database mimicking MySQL

default.url = "jdbc:h2:file:~/db/db;MODE=MYSQL"

The �#� character at the beginning of a line is a comment symbol. You have to con�gure
the web application so it uses a local in-memory database that mimicks MySQL, so you need to
comment the Amazon RDS lines and uncomment the appropriate H2 Database lines. The result
will be this:

Amazon RDS parameters

default.url = "jdbc:mysql://DBURL/fisiorepo?characterEncoding=UTF-8"

default.driver = com.mysql.jdbc.Driver

default.username = fisiorepo

default.password = PASSWORD

H2 Database parameters

default.driver = org.h2.Driver

Choose one of the following two

In memory database

default.url = "jdbc:h2:mem:play"

Local database mimicking MySQL

default.url = "jdbc:h2:file:~/db/db;MODE=MYSQL"

2.3. Install and Run the Web Application

Open a terminal (PowerShell in Windows, Terminal in Mac OS) and navigate to the project
folder. Inside that folder, type the following commands:

sbt clean

sbt compile

sbt run

2

https://github.com/rgarciacarmona/fisio-repo

Sistemas de Información Hospitalarios

Máster en Ingeniería Biomédica

Be patient, since the second command in particular could take a long time. The �rst line
cleans your development environment (usually not needed at this point), the next one compiles
the web application �les, and the last line runs a web server with the application.

As explained by the output of the last command, now the server should be listening at port
9000, and will continue to run until you press enter in the terminal window.

Open a web browser (any will do) and go to http://localhost:9000/. Wait a little, since
the �rst time the server answer a request it takes some time. You can see the progress in the
terminal window. If everything has worked properly you should see something like this:

Congratulations! You've successfully run your �rst Play application.

3. Modify a Web Application

In this section you'll understand how the web application is made up and will make a small
modi�cation to it.

3.1. Anatomy of a Play Web Application

The Play framework applications follow the MVC (Model View Controller) model. These
web applications have a �xed folder structure; each of them serving a di�erent purpose. If you
understand this structure it will be easy to �nd what you're looking for and add di�erent features
to the application.

The downloaded application has many folders, but the more important ones are the following:

app - Application sources

| controllers - Controllers

| models - Models

| views - Views

conf - Configurations files

| application.conf - Main configuration file

| routes - Routes definition

| META-INF - Application-specific configuration files

| persistence.xml - Database configuration file

public - Public assets

| stylesheets - CSS files

| javascripts - Javascript files

| images - Image files

As you can see, the �app� folder contains the three types of elements that comprise an MVC
application: models, views and controllers. Review the unit 1 slides for an explanation of the
MVC model.

But applications also contain the so-called �public� resources: images, JavaScript �les and
other assets that are served directly by the web server and aren't part of the MVC model. These
assets are usually (but not always) concerned with the look and feel of the application, so you'll
not need to work with them in this assignment.

The �conf� folder contains the con�guration �les for the setup and tuning of the application.
You already know about the �application.conf� �le, since you change some of its lines to make it
work with an in-memory database, although this �le con�gures many other aspects of the web
application.

The �routes� �le is specially important, since it de�nes the web application's endpoints. Play
applications follow the REST model, so all dynamically generated resources will be de�ned
by a verb (like POST), a location (like /author) and the controller who will implement the

3

http://localhost:9000/

Sistemas de Información Hospitalarios

Máster en Ingeniería Biomédica

action (like controllers.AuthorController.addAuthor()). Therefore, to develop a Play application
we must create a set of models, views and controllers, and then de�ne the endpoints that will
be used to access the provided features. You should be familiar with the REST model from the
�rst assignment and the slides of units 2 and 3.

Finally, the �persistence.xml� �le contains the con�guration parameters speci�c to the data-
base solution selected (in this case, the JPA4 ORM5). The only lines of this document that you
need to be concerned with for the scope of this project are those with the class tag, since all the
elements of your model should be re�ected here.

3.2. Import the Project into IntelliJ

You are going to use IntelliJ to have an easier time coding in Java. Of course, you could use
a simple text editor, but the syntax highlighting and other features will make your life happier.
You're going to use IntelliJ instead of Eclipse or Netbeans since this IDE (Integrated Development
Environment) is the easiest one to set up with Play.

To import the web application project, follow these steps:

Open IntelliJ

Click in File and select Open...

Select your project folder and click OK.

Click OK again.

At the left part of the screen you should see something like this:

You can now explore all the project �les, open them and edit their contents if you wish. You'll
still continue using the terminal to compile and run the project, though.

4Java Persistence API
5Object Relational Model

4

Sistemas de Información Hospitalarios

Máster en Ingeniería Biomédica

3.3. Analysis of an Existing Feature: Authors

To add your own feature, you must �rst understand how one of the already existing features
work. Let's study the inner workings of the way this application stores authors of scienti�c
physiotherapy papers.

3.3.1. Routes De�nition

First, look again at the �routes� �le, paying special attention to these lines:

GET /newAuthor controllers.AuthorController.index()

POST /author controllers.AuthorController.addAuthor()

GET /authors controllers.AuthorController.getAuthors()

As you can see, there are three endpoints de�ned:

newAuthor: For showing a form that allows the user to insert a new author.

author: That inserts a new author into the database.

authors: That shows all the existing authors to the user.

Each of these endpoints is linked to a controller method of the AuthorController.java class.
You'll take a look at this class later.

3.3.2. Model De�nition

Open the �app/models/Author.java� class:

@Entity

@JsonIdentityInfo(generator = ObjectIdGenerators.PropertyGenerator.class,

property = "id")

public class Author {

@Id

@GeneratedValue(strategy=GenerationType.AUTO)

public Long id;

public String shortName;

public String fullName;

public String affiliation;

@ManyToMany(mappedBy="authors")

@JsonIgnore

public List<Publication> publications;

}

This piece of code de�nes a data type that will be managed by the application. In this
example: an author. As you can see, authors have an ID, a short name, a full name and an
a�liation, and are linked to several publications. De�ning a data type is as easy as creating a
class like this one.

You must also take a look at two other �les in the model folder: �app/models/AuthorRepository.java�
and �app/models/JPAAuthorRepository.java�. These are, respectively, an interface that de�nes
the actions that can be performed over an author, and its implementations. As you can see by
looking at the interface:

@ImplementedBy(JPAAuthorRepository.class)

public interface AuthorRepository {

CompletionStage<Author> add(Author author);

CompletionStage<Stream<Author>> list();

}

There are two actions de�ned: one for adding a new author, and another for retrieving all
authors from the database. The implementing class (�app/models/JPAAuthorRepository.java�)
details are not specially important at this point, so don't worry about them for now.

5

Sistemas de Información Hospitalarios

Máster en Ingeniería Biomédica

3.3.3. View De�nition

First, open the �app/views/main.scala.html� �le. This �le de�nes the basic shape of all the
views of this web application. Therefore, its details aren't really important for the analysis of
the author feature, but note that the main tags of an HTML document, like head and body, are
present in this �le and used by all other views.

Now, open the �app/views/author.scala.html� �le. This is the part you need to focus for now:

<form method="POST" action="@routes.AuthorController.addAuthor()">

@helper.CSRF.formField

Short Name: <input type="text" name="shortName"/>

Full Name: <input type="text" name="fullName"/>

Affiliation: <input type="text" name="affiliation"/>

<button>Add Author</button>

</form>

This view presents a form with all the �elds needed to create a new author. Note that there's
no �eld for ID, since this attribute is automatically assigned by the database when the author
is created. Also note that this form sends a POST request to the URL speci�ed in the �routes�
�le for the addAuthor() method. This form doesn't o�er the possibility of linking an author to a
existing or new publication. That feature is out of the scope of this assignment.

While reading the code, pay attention to how the model and view are linked; this view allows
the input of the information needed to create a new element. Finally, notice that the view calls
the controller through the form.

3.3.4. Controller De�nition

Open the �app/controllers/AuthorController.java� class. This class contains all the controller
logic for the authors. The �routes� �le de�ned three endpoints for the authors, and each of them
is realized by a method of this class. Let's look at them in order. First, the index() method:

public Result index() {

return ok(views.html.author.render());

}

This method returns an OK HTTP response (review unit 1 slides) and renders the view that
you studied in the previous section. That is, it calls for a form that allows the user to create a
new author, hence the endpoint address.

Now, look at the addAuthor() method:

public CompletionStage<Result> addAuthor() {

Author author = formFactory.form(Author.class).bindFromRequest().get();

return authorRepository.add(author).thenApplyAsync(p -> {

return redirect(routes.AuthorController.index());

}, ec.current());

}

This method performs the following tasks, in order:

1. Creates a new author from the data received in the HTTP request.

2. Inserts the author into the database.

3. Redirects to the index() method. So, after the author is inserted, the new author form is
shown again (as explained before).

This method is invoked by a POST request, so it makes sense that is used to add information
to the database.

Finally, look at the getAuthors() method:

public CompletionStage<Result> getAuthors() {

return authorRepository.list().thenApplyAsync(authorStream -> {

return ok(toJson(authorStream.collect(Collectors.toList())));

}, ec.current());

}

6

Sistemas de Información Hospitalarios

Máster en Ingeniería Biomédica

This method performs the following tasks, in order:

1. Retrieves all authors from the database.

2. Marshalls the list of authors into a JSON document.

3. Returns an OK HTTP response with the JSON document.

This method does the most basic read operation over a database: just retrieve all items of a
speci�c type. However, it is easy to expand it to allow for searches (if you feel curious, look at
the searchPublications(String title) method of the PublicationController class).

This controller method returns a JSON document so you can see that HTML is not the only
document type that can be returned in an HTTP response. It's as easy as working with HTML.

And, with that, you understand how everything �ts together! You can now get the full picture
of how models, views, controllers and routes �t together in a Play framework application.

3.4. Add a New Feature to the Application

You have already understood how an existing Play application is coded, con�gured and built,
so now is your turn to add a new feature to the provided web application. You must extend it
by:

Adding a new element to the model, similar to the author used as an example in this text.
To do this, you must:

1. Create a new class that represents the model (like Author.java) in the appropriate
folder. For this assignment, you don't need to link that element to any other (like
author and publication are). It's enough to create an element with an ID and two or
three other attributes.

2. Create a repository interface (like AuthorRepository.java) and a class that implements
it (like JPAAuthorRepository.java). This repository must have two methods: one for
adding a new element and the other for retrieving all existing elements. You can reuse
a lot of code from the examples provided.

3. Add the element to the classes listed in the �persistence.xml� con�guration �le.

Creating a new view for that model. This view should have a form with the �elds needed
to create a new element of the model. Take a look at �app/views/author.scala.html� for
inspiration and put your view in the appropriate folder.

Coding a controller that links the view and the model you've just created. Look carefully
at AuthorController.java, since most of your code will be very similar to that class. Keep
in mind that you will need to create methods for:

• Rendering the view (with the form) that you have created before.

• Adding a new element of the model from a POST HTTP request.

• List all existing elements in the database as a JSON document.

Adding three new entries to the �routes� �le, one for each of the controller behaviors
programmed. Again, look at the existing entries of the �routes� �le for inspiration.

When you've �nished doing all this, run your web application by typing:

sbt compile

sbt run

This is the web application that you should deliver to the professor.

4. Delivery

To pass this assignment you must make a ZIP �le of all the folders of your web application
and send it to the professor's email (r.garcia.carmona@gmail.com). Alternatively, if you know
what you're doing, you can fork the provided GitHub project and send the link to your version
of the project to the professor.

7

mailto:r.garcia.carmona@gmail.com

Sistemas de Información Hospitalarios

Máster en Ingeniería Biomédica

5. If you are bored...

If you're bored and have already �nished the assignment, you can try any of the following
advanced tasks:

1. Use a MySQL database in your computer instead of the in-memory database. For that you
will need to install MySQL Workbench and MySQL Server Community Edition. Both can
be installed from the o�cial MySQL website6. This is the DBMS (DataBase Management
System) that the web application is going to use to store the data in the production
environment (in the next assignment).

2. Try to understand the complete structure of the provided web application. It has several
elements that, linked together, model a scienti�c paper.

3. Use Postman to manually send HTTP requests to the application. If you've done the
previous optional task, it could be interesting to check the �/publicationJSON� endpoint,
since it uses JSON to add publications to the database, instead of the already explained
HTML forms. Postman: Can be installed from the o�cial Postman website7. You will use
this software to send HTTP requests to your web application.

6https://dev.mysql.com/downloads/
7https://www.getpostman.com/

8

https://dev.mysql.com/downloads/
https://www.getpostman.com/

