
Rodrigo García Carmona

Universidad San Pablo-CEU

Escuela Politécnica Superior

XML

XML INTRODUCTION

XMLDATABASES 2

THE XML LANGUAGE

• XML: Extensible Markup Language

• Standard for the presentation and transmission of information.

• An XML file is a text organized using tags.

• Similar to HTML

• But here tags structure content…

• …not the way it’s displayed.

• Tree shaped.

• Specially apt for streaming.

• This unit contains some samples and supplementary material. These
can be found also as separate files so they can be played with. The
slide will make a reference to them when appropriate.

XMLDATABASES 3

XML RULES

• Tag: defines a piece of content. There are opening and a closing tag.

• Begin with “<“ and ends with “>”. Closing tags begin with “</”.

• Block: content enclosed by a tag.

• Example: <title>My title</title>

• Attribute: extra information provided by a tag. Inside the opening tag.

• Surrounded by double quotes (“”). Attributes must have a value.

• Example: <book price="100">Harry Potter</book>

• The closing tag is optional: only the opening tag.

• Opening tag ends with “/>”. Have no block inside.

• Example: <remark text="Good" />

• Comments: Not processed. Between “<!--" and “-->”.

• XML is case-sensitive. Spaces after the first are ignored.

XMLDATABASES 4

XML EXAMPLE

<Bookstore> <!-- This is a bookstore -->
<Book ISBN="ISBN-0-13-713526-2" Price="85" Edition="3rd">

<Title>A First Course in Database Systems</Title>
<Authors>

<Author>
<First_Name>Jeffrey</First_Name>
<Last_Name>Ullman</Last_Name>

</Author>
<Author>

<First_Name>Jennifer</First_Name>
<Last_Name>Widom</Last_Name>

</Author>
</Authors>
<Import />

</Book>
<Book ISBN="ISBN-0-13-815504-6" Price="100">

<Title>Database Systems: The Complete Book</Title>
<Remark>Buy this book bundled with "A First Course"!</Remark>

<Authors><Author>
<First_Name>Hector</First_Name>
<Last_Name>Garcia</Last_Name>

</Author>
</Authors>

</Book>
</Bookstore>

XMLDATABASES 5

Relational model

• Structure:

• Tables

• Schema:

• Predetermined

• Queries:

• Easy and intuitive

• Ordering:

• None

• Best for:

• Machines, storage

XML

• Structure:

• Tree hierarchy

• Schema:

• Flexible, self-descriptive

• Queries:

• A little more complex…

• Ordering:

• Implicit

• Best for:

• Humans, streaming

RELATIONAL MODEL VS. XML

XMLDATABASES 6

WELL-FORMED XML

• An XML document is well-formed if it complies with some basic structural
requirements:

• Only one root element.

• Opening and closing tags are matched. Proper nesting.

• Uniquely-names attributes in each element.

• Parsers: DOM, SAX…

XML ParserXML
Document

Parsed
XML



Error!

XMLDATABASES 7

SHOWING XML

• Rule-based languages can be used to transform XML into HTML:

• CSS: Cascading Style Sheets.

• XSL: eXtensible Stylesheet Language.

• The XML is processed by the parser first.

CSS / XSL
Interpreter

Parsed
XML

HTML
Document

Rules

XMLDATABASES 8

XML STANDARDS

• XML is the most popular data representation and exchange format.

• There are plenty of standards that work alongside XML.

• These are the most important:

• DTD

• XSD

• XPath

• XQuery

• XSL

XMLDATABASES 9

DTD AND XML SCHEMA

XMLDATABASES 10

VALID XML

• An XML document is well-formed if it complies with some basic structural
requirements:

• Only one root element.

• Opening and closing tags are matched. Proper nesting.

• Uniquely-named attributes in each element.

• An XML document is valid if it complies with some content-specific
requirements. These requirements can be specified using two standards:

• DTD: Document Type Descriptor.

• XSD: XML Schema.

• This section uses the supplementary material marked as “01-DTD XSD”.

XMLDATABASES 11

VALIDATING XML

XML
Parser with
validation

XML
Document

Parsed
XML



Not
well-formed!

DTD / XSD



Not
valid!

XMLDATABASES 12

DTD

• Document Type Descriptor.

• Simple standard to validate XML.

• Provides a grammar that can be used to define:

• Elements

• Attributes

• Nesting

• Ordering

• Number of occurrences

• DTD has some special attributes (untyped pointers):

• ID

• IDREF / IDREFS

• The easiest way to learn DTD is by example!

XMLDATABASES 13

SAMPLE DTD

<!DOCTYPE Bookstore [

<!ELEMENT Bookstore (Book | Magazine)*>

<!ELEMENT Book (Title, Authors, Remark?)>

<!ATTLIST Book ISBN CDATA #REQUIRED

Price CDATA #REQUIRED

Edition CDATA #IMPLIED>

<!ELEMENT Magazine (Title)>

<!ATTLIST Magazine Month CDATA #REQUIRED Year CDATA #REQUIRED>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Authors (Author+)>

<!ELEMENT Remark (#PCDATA)>

<!ELEMENT Author (First_Name, Last_Name)>

<!ELEMENT First_Name (#PCDATA)>

<!ELEMENT Last_Name (#PCDATA)>

]>

XMLDATABASES 14

XML FOR SAMPLE DTD

XMLDATABASES 15

<Bookstore>

<Book ISBN="ISBN-0-13-713526-2" Price="
100" Edition="3rd">

<Title>A First Course in Database
Systems</Title>

<Authors>

<Author>

<First_Name>Jeffrey</First_Name>

<Last_Name>Ullman</Last_Name>

</Author>

<Author>

<First_Name>Jennifer</First_Name>

<Last_Name>Widom</Last_Name>

</Author>

</Authors>

</Book>

<Book ISBN="ISBN-0-13-815504-6" Price="100">

<Title>Database Systems: The Complete
Book</Title>

<Authors>

<Author>

<First_Name>Hector</First_Name>

<Last_Name>Garcia-Molina</Last_Name>

</Author>

<Author>

<First_Name>Jeffrey</First_Name>

<Last_Name>Ullman</Last_Name>

</Author>

<Author>

<First_Name>Jennifer</First_Name>

<Last_Name>Widom</Last_Name>

</Author>

</Authors>

<Remark>

Buy this book bundled with "A First
Course" - a great deal!

</Remark>

</Book>

</Bookstore>

SAMPLE DTD WITH POINTERS

XMLDATABASES 16

<!DOCTYPE Bookstore [

<!ELEMENT Bookstore (Book*, Author*)>

<!ELEMENT Book (Title, Remark?)>

<!ATTLIST Book ISBN ID #REQUIRED

Price CDATA #REQUIRED

Authors IDREFS #REQUIRED>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Remark (#PCDATA | BookRef)*>

<!ELEMENT BookRef EMPTY>

<!ATTLIST BookRef book IDREF #REQUIRED>

<!ELEMENT Author (First_Name, Last_Name)>

<!ATTLIST Author Ident ID #REQUIRED>

<!ELEMENT First_Name (#PCDATA)>

<!ELEMENT Last_Name (#PCDATA)>

]>

XML FOR SAMPLE DTD WITH POINTERS

XMLDATABASES 17

<Bookstore>
<Book ISBN="ISBN-0-13-713526-2" Price="100" Authors="JU JW">

<Title>A First Course in Database Systems</Title>
</Book>
<Book ISBN="ISBN-0-13-815504-6" Price="85" Authors="HG JU JW">

<Title>Database Systems: The Complete Book</Title>
<Remark>

Amazon.com says: Buy this book bundled with
<BookRef book="ISBN-0-13-713526-2" /> - a great deal!

</Remark>
</Book>
<Author Ident="HG">

<First_Name>Hector</First_Name>
<Last_Name>Garcia-Molina</Last_Name>

</Author>
<Author Ident="JU">

<First_Name>Jeffrey</First_Name>
<Last_Name>Ullman</Last_Name>

</Author>
<Author Ident="JW">

<First_Name>Jennifer</First_Name>
<Last_Name>Widom</Last_Name>

</Author>
</Bookstore>

XSD

• XML Schema.

• Very broad standard to validate XML.

• Provides a grammar that can be used to define:

• Elements

• Attributes

• Nesting

• Ordering

• Number of occurrences

• Data types

• Keys

• Pointers (typed)

• …

• XSD is out of the scope of this unit. We just provide an example so you can recognize
it when you see it.

XMLDATABASES 18

SAMPLE XSD

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Bookstore">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="Book" type="BookType“ minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="Author" type="AuthorType" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>
<xsd:key name="BookKey">

<xsd:selector xpath="Book" /><xsd:field xpath="@ISBN" />
</xsd:key>
<xsd:key name="AuthorKey">

<xsd:selector xpath="Author" /><xsd:field xpath="@Ident" />
</xsd:key>
<xsd:keyref name="AuthorKeyRef" refer="AuthorKey">

<xsd:selector xpath="Book/Authors/Auth" /><xsd:field xpath="@authIdent" />
</xsd:keyref>
<xsd:keyref name="BookKeyRef“ refer="BookKey">

<xsd:selector xpath="Book/Remark/BookRef" /><xsd:field xpath="@book" />
</xsd:keyref>

</xsd:element>

XMLDATABASES 19

Advantages

• Applications can assume that
there’s an underlying
structure to the document.

• CSS/XML can be used safely.

• It’s easier to write
documentation when there’s
a fixed structure.

• All other advantages of
strong typing.

Disadvantages

• A well-formed XML is easier
to modify and more flexible.

• DTD/XSD files can end
becoming too big and
cumbersome.

• All other disadvantages of
weak typing.

ADVANTAGES AND DISADVANTAGES OF USING
DTD/XSD

XMLDATABASES 20

XPATH AND XQUERY

XMLDATABASES 21

NAVIGATING AN XML

• We must think of an XML file as a tree. XPath is an standard that allows us to
navigate such tree. XPath takes an XML document or stream as input.

• This section uses the supplementary material marked as “02-XPath”, which
contains a sample XML and several examples of how to use XPath. Running these
examples in a tool like Kernow is the best way to learn.

• Basic XPath building blocks:

• /: Separator

• //: Me and all my children

• /TagName: Tags

• /@AttributeName: Atributtes

• To get its value we write: /data(@AttributeName)

• |: OR, used with parenthesis

• *: Wildcard

XMLDATABASES 22

XPATH CONDITIONS

• Conditions are used to filter tags:

• []: Used to separate conditions

• Could be nested to group conditions

• They include an implicit “/”

• [TagName]: Existence

• <, >, =, !=: Comparators

• and: logical AND, to link conditions

• or: logical OR, to link conditions

• [number]: Counter

XMLDATABASES 23

XPATH NAVIGATION AXES AND FUNCTIONS

• XPath contains 13 navigation axes. These are some we’ll use:

• parent::

• preceding-sibling::

• following-sibling::

• descendents:

• self:

• XPath has several functions. These are some we’ll use:

• contains(element, “text”)

• name()

• count()

XMLDATABASES 24

XQUERY

• XQuery is a language used to make queries over an XML.

• XPath is actually a subset of XQuery.

• It’s similar in concept to SQL.

• Queries can be nested.

• XQuery is out of the scope of this course.

Data
Result

Query

Data
Result

Query

Query

XMLDATABASES 25

XSLT

XMLDATABASES 26

XSLT

• XSL: Extensible Stylesheet Language: Initial version.

• XSLT: XSL (with) Transformations: With some improvements.

• XSLT, unlike XPath, is written using XML. It’s used to build templates.

• XSLT sees the document as a collection of nodes:
elements, attributes, text, comments…

• It’s useful to find and replace parts of a XML document (using XPath).

• It can be used recursively.

• Uses structures typical of programming languages:

• Conditionals: (if-else)

• Iterators: (for-each)

• While using it, we should put special care with:

• Strange behaviors with white spaces.

• Implicit priorities in templates.

• In this section we’ll learn how to use XSLT to turn a XML into a HTML. It uses the supplementary
material marked as “03-XSLT”, which contains a XML and several examples of how to use XSLT to
turn a XML into a HTML. Running these examples in a tool like Kernow is the best way to learn.

XMLDATABASES 27

XSLT ELEMENTS (I)

• <xsl:template>

• To build templates.

• What’s inside is what’s written as output.

• Can also be used to discard data.

• The match attribute targets a node or set of nodes of the XML.

• The value of match is an XPath expression.

• match=“/” covers all the document.

• match=“text()” covers all text, but no tags or attributes.

• match=“*|@*|text()” covers all text, but processes each entity independently.

• Be careful with template ordering.

• <xsl:value-of>

• Gets the value of a node.

• The select attribute specifies what’s extracted.

• The value of select is an XPath expression.

XMLDATABASES 28

XSLT ELEMENTS (II)

• <xsl:for-each>

• Iterates over a set of elements.

• The select attribute specifies what’s iterated.

• The value of select is an XPath expression.

• <xsl:sort>

• Used inside a for-each.

• Sorts the elements.

• The select attribute specifies the ordering criterium.

• The value of select is an XPath expression.

• <xsl:if>

• Imposes a condition to select an element or not.

• It’s used inside a for-each.

• The test attribute specifies the condition.

XMLDATABASES 29

XML AND JAVA

XMLDATABASES 30

XML & UML

• XML is useful for:

• Interoperability between different platforms.

• Transmitting information (streaming).

• Representation of tree-structured data.

• UML is useful for:

• High-level design.

• Data management in object-oriented languages.

• Visual representation of data.

• We want to be able to transform data from XML to UML and vice versa.

• So we can use the solution best-tailored to each situation.

• We’ll learn how to make this transformation using Java since:

• Getting from UML to Java is trivial.

• Can be done in a similar way in all other object-oriented languages.

XMLDATABASES 31

XML & JAVA

• There’re several solutions that allow for the management of XML data in Java.

• There’re two approaches:

• Process the XML directly:

• Similar to JDBC.

• JAXP: Java API for XML Processing.

• Translate between XML documents and Java objects:

• Similar to JPA.

• JAXB: Java Architecture for XML Binding.

• We’ll learn how to use this alternative.

• JAXP and JAXB are the most popular XML Java libraries, but there are many
others.

• We can also use Java to invoke the already studied XML standards, like XSLT.

XMLDATABASES 32

JAXB

• JAXB: Java Architecture for XML Binding

• Included in the standard JDK since version 6.

• Allows us to perform two operations:

• Marshalling: Turn Java objects into XML documents.

• Unmarshalling: Turn XML documents into Java objects.

• We have to annotate the Java classes that will represent the data contained in the
XML documents.

• JAXB uses the following annotations:

• @XmlRootElement: java.xml.bind.annotation.XmlRootElement

• @XmlElement: java.xml.bind.annotation.XmlElement

• @XmlElementWrapper: java.xml.bind.annotation.XmlElementWrapper

• @XmlAttribute: import java.xml.bind.annotation.XmlAttribute

• @XmlType: java.xml.bind.annotation.XmlType

• @XmlTransient: java.xml.bind.annotation.XmlTransient

XMLDATABASES 33

