
Rodrigo García Carmona

Universidad San Pablo-CEU

Escuela Politécnica Superior

UML

DATA MODELING WITH UML

UMLDATABASES 2

DATA MODELING

• Data modelling is the way we represent data in order to manage it.

• Choosing the way we model data depends on the way we are going to use that data.

• Sample data models:

• Relational: To implement DBMS. Very efficient.

• XML: Tree-shaped. Human readable.

• These are low-level models, implemented with system concerns.

• As an alternative, we could use high-level models:

• E-R: Entity-Relationship model. Already studied.

• UML: Unified Modelling Language.

• We will study it in this lesson. Most popular.

• High-level models are very easy to understand:

• Can be depicted using “drawings”.

• Can be translated to a low-level language later.

UMLDATABASES 3

UML FEATURES

• Designed with object-oriented languages in mind.

• Useful for software architects and managers.

• Broad standard:

• This course will only cover the part related with data modeling.

• Composed of several diagram types:

• Structural: Static design and analysis.

• Class, component, package, deployment…

• Behavioral: Dynamic design and analysis.

• Activity, sequence, state, use case…

• In this course we will study class diagrams.

• A class diagram can be easily translated to an object-oriented language code.

• The way object orientation understands data is very different to the relational
model’s approach.

UMLDATABASES 4

DATA MODELING WITH UML

• 7 core concepts:

• Classes.

• Associations.

• Association classes.

• Composition.

• Aggregation.

• Inheritance (generalization and specialization).

• Realization.

• Association, composition, aggregation, generalization, specialization and
realization are subtypes of a generic idea called relation.

• The UML “relation” should never be confused with the relational model
“relation”.

• We will study how to use UML to model data.

UMLDATABASES 5

CLASSES

• Model a component type.

• Same as classes in object orientation. Made of name, attributes and methods.

• Similar to entities in E-R diagrams.

• In order to model data we will take into account the following:

• We must add “pk” to the primary key.

• There’s a school of thought that postulates that data shouldn’t have
behavior. If followed, the method block should be omitted.

Student

SID pk
Name
Score

College

Name pk
Country

UMLDATABASES 6

ASSOCIATIONS

• Generic relationships between instances (objects) of two classes.

• Represented with solid lines.

• Optionally, the could use a name as identifier.

• Similar to relationships in E-R diagrams.

Student

SID pk
Name
Score

College

Name pk
Country

Applied

UMLDATABASES 7

ASSOCIATIONS MULTIPLICITY

• The objects amount at each side of the association is shown with an interval.

• Each side is treated independently.

• The amount in one side depicts how the other side “sees” it.

• Expressed as follows: minimum amount .. maximum amount.

• Minimum and maximum could be the same.

• In this case we can remove the “..”

• “*” indicates any amount.

• Examples:

• 3..5: Between three and five.

• 1..1: Just one. Also written as “1”.

• 0..*: Without limits. Also written as “*”.

• 1..*: More than one but without upper limit.

UMLDATABASES 8

ASSOCIATION EXAMPLE

• Students can apply to up to 5 universities, and they must apply to at least 1.

• A college can’t have more than 20.000 applicants at any given moment.

Student

SID pk
Name
Score

College

Name pk
Country

Applied

0..20000 1..5

UMLDATABASES 9

ASSOCIATION WITH THE SAME CLASS

• An association can have the same class in both ends.

• If the association is not symmetric it’s a good idea to indicate which roll each
end fulfills.

Student

SID pk
Name
Score

Sibling

*

*

Student

SID pk
Name
Score

Parent

1

*

Father

Son

UMLDATABASES 10

ASSOCIATION TYPES ATTENDING TO ITS
MULTIPLICITY

• Associations can be divided in three special subtypes attending to its
multiplicity:

• One-to-One:

• 0..1 in both ends.

• Many-to-One:

• 0..1 in one end and 0..* in the other.

• Many-to-Many:

• 0..* in both ends.

• These subtypes are called complete if:

• Complete One-to-One: 1 in both ends.

• Complete Many-to-One: 1 in one end and 1..* in the other.

• Complete Many-to-Many: 1..* in both ends.

UMLDATABASES 11

ASSOCIATION CLASSES

• Classes that don’t represent objects, but characteristics of a relationship
between two other classes.

• They provide extra detail.

• They have attributes but no primary key.

Student

SID pk
Name
Score

College

Name pk
Country

Applied

0..20000 1..5

AppInfo

Date
Decision

UMLDATABASES 12

REMOVE ASSOCIATION CLASSES

• Sometimes association classes are not really needed:

• If one end’s multiplicity is 0..1 or 1.

• Specially recommended if the multiplicity is 1.

• We can put the association class’ attributes inside one of the two classes linked
by it.

Student

SID pk
Name
Score

College

Name pk
Country

Applied

0..20000 1

AppInfo

Date
Decision

UMLDATABASES 13

ASSOCIATION CLASS REMOVAL EXAMPLE

Student

SID pk
Name
Score

College

Name pk
Country

Applied

0..20000 1

AppInfo

Date
Decision

Student

SID pk
Name
Score
Date
Decision

College

Name pk
Country

Applied

0..20000 1

UMLDATABASES 14

COMPOSITION AND AGGREGATION

• Association’s special cases. Both represent a relationship between the parts and the whole.

• Aggregation:

• Many-to-One association’s special case.

• The parts and the whole don’t need each other.

• They make sense by themselves. The whole “uses” the parts.

• An empty diamond is used instead of 0..1.

• If parts are not explicitly numbered, an * is assumed.

• Parts must have “pk”.

• Composition:

• Many-to-One association’s special case.

• The parts and the whole need each other.

• They don’t make sense by themselves. The whole “owns” the parts.

• A filled diamond is used instead of 1.

• If parts are not explicitly numbered, an * is assumed.

• Although parts don’t need to have “pk”, it’s strongly recommended.

UMLDATABASES 15

COMPOSITION AND AGGREGATION EXAMPLES

• Aggregation:

• Composition:

College

Name pk
Country

Department

Name pk
Building

College

Name pk
Country

Professor

PID pk
Name
Course

UMLDATABASES 16

INHERITANCE

• Inheritance between two classes is depicted using a “solid-headed” arrow.

• Inheritance is made up of two relationships:

• Generalization: The superclass (or parent class) is the more generic version.

• The class pointed by the arrow.

• Specialization: The subclass (or child class) is the more specific version.

• Multiplicity is not specified here.

• We are dealing with objects, not classes.

• The subclass owns all attributes, associations, compositions and aggregations of
its superclass.

• Several arrows can be put together for clarity’s sake.

• Subclasses don’t need “pk”.

UMLDATABASES 17

INHERITANCE TYPES

• There’s a two-dimension classification for inheritance:

• Completeness:

• Complete: Every object instance of a superclass is also instance of at least
one of its subclasses.

• Incomplete (partial): An object can be an instance of the superclass without
being an instance of one of its subclasses.

• Exclusivity:

• Disjoint (exclusive): If an object is an instance of a subclass it can’t be an
instance of another subclass of the same superclass.

• Overlapping: An object can be an instance of several subclasses of the same
superclass at the same time.

• Completeness and exclusivity are depicted in UML diagrams using brackets: “{}”

UMLDATABASES 18

COMPLETE AND DISJOINT INHERITANCE
EXAMPLE

ForeignStudent

Country
Visa

DomesticStudent

Student

SID pk
Name
Score
Course

UMLDATABASES 19

COMPLETE AND OVERLAPPING INHERITANCE
EXAMPLE

ForeignStudent

Country
Visa

ActiveStudent

Course

Student

SID pk
Name
Score

DomesticStudent

UMLDATABASES 20

INCOMPLETE AND DISJOINT INHERITANCE
EXAMPLE

ForeignStudent

Country
Visa

DomesticStudent

SID pk
Name
Score
Course

UMLDATABASES 21

INCOMPLETE AND OVERLAPPING INHERITANCE
EXAMPLE

ForeignStudent

Country
Visa

ActiveStudent

Course

DomesticStudent

SID pk
Name
Score

UMLDATABASES 22

REALIZATION: INTERFACES

• To understand realization we must understand the idea of an interface.

• UML defines an interface as a special kind of class that:

• Defines a functionality that other class must implement.

• Doesn’t provide any functionality by itself.

• Is a “contract” that must be fulfilled by the implementing class.

• Doesn’t have attributes.

• We can view an interface as a “template” to build classes.

• It’s represented as a class with the <<interface>> keyword.

• In the “data shouldn’t have behavior” school of though interfaces aren’t used:

• Interfaces are designed to define a behavior.

• Interfaces doesn’t have attributes, only methods.

• Interfaces can’t be instantiated.

UMLDATABASES 23

REALIZATION

• Realization is a relationship established between an interface and the class that
implements it.

• It’s depicted using a dotted arrow with an “empty head”.

• Is conceptually similar to the complete disjoint inheritance.

<<interface>>
Manager

GiveOrder
EvaluateWorker
Congratulate

EvilManager

Shout
Fire

UMLDATABASES 24

UML TO RELATIONAL MODEL TRANSLATION

UMLDATABASES 25

UML TO RELATIONAL MODEL TRANSLATION

• UML is easily understood by humans.

• But it’s still necessary to translate UML to a relation model.

• The relational model is used by most DBMS.

• Provides a higher efficiency.

• This translation can be semiautomated.

• As long as all “standard” classes have a “pk”.

DBMS
Relational

Model
UML

Architect

Translator

UMLDATABASES 26

CLASSES TRANSLATION

• Each class is a table.

• The “pk” attribute is the primary key.

• Each attribute is a column.

Student(SID, Name, Score)

College(Name, Country)

Student

SID pk
Name
Score

College

Name pk
Country

UMLDATABASES 27

ASSOCIATIONS TRANSLATION

• Each association is a table.

• This table has one column for each related class, pointing to its “pk”. These
columns are foreign keys.

Student(SID, Name, Score)

College(Name, Country)

Applied(SID, Name)

Student

SID pk
Name
Score

College

Name pk
Country

Applied

UMLDATABASES 28

ASSOCIATIONS TRANSLATION: PRIMARY KEYS

• Which primary key we choose for the association’s table depends on the
association’s multiplicity:

• Both ends are 0..1 or 1:

• The primary key may be the “pk” of any of the ends’ classes.

• This table is not really needed (as we’ll see later).

• Only one end is 0..1 or 1:

• The primary ley must be the “pk” of the end that doesn’t have the 0..1
or 1 multiplicity.

• This table is not really needed (as we’ll see later).

• Neither end is 0..1 or 1:

• The primary key must be the combination of both “pk”.

UMLDATABASES 29

ASSOCIATIONS TRANSLATION EXAMPLES:
PRIMARY KEYS

Applied(SID, Name)

Applied(SID, Name)

Student

SID pk
Name
Score

College

Name pk
Country

Applied

0..20000 1

Student

SID pk
Name
Score

College

Name pk
Country

Applied

0..20000 1..5

UMLDATABASES 30

UNNEEDED TABLES

• It’s not always necessary to create a new table to represent an association.

• Sometimes the association’s data can be merged to one of the two classes’ tables.

• This is feasible when at least one of the ends have a 0..1 or 1 multiplicity.

• If multiplicity is 0..1 the table must support NULL values for that attribute.

Student

SID pk
Name
Score

College

Name pk
Country

Applied

0..20000 0..1

Student(SID, Name, Score, College.Name)

College(Name, Country)

Applied(SID, Name)

UMLDATABASES 31

SAME CLASS ASSOCIATIONS TRANSLATION

• The table that represents the association features two instances of the class’
table “pk”.

• As explained before, some tables could not be really needed, and its contents
could be merged into the class.

Sibling(SID1, SID2)

Parent(SIDFather, SIDSon)

Student

SID pk
Name
Score

Sibling*

*
Student

SID pk
Name
Score

Parent

1

*

Father

Son

UMLDATABASES 32

ASSOCIATION CLASSES TRANSLATION

• We add the association class’ attributes to the table that represents the association.

Student(SID, Name, Score)

College(Name, Country)

Applied(SID, Name, Date, Decision)

Student

SID pk
Name
Score

College

Name pk
Country

Applied

0..20000 1..5

AppInfo

Date
Decision

UMLDATABASES 33

AGGREGATION AND COMPOSITION
TRANSLATION

• The relational model’s semantics doesn’t support UML aggregation and
composition.

• They are considered standard associations.

• Aggregation is translated as an association with 0..1 multiplicity in one end.

• This table must support NULL attributes.

• Composition is translated as an association with 1 multiplicity in one end.

UMLDATABASES 34

AGGREGATION AND COMPOSITION
TRANSLATION EXAMPLES

• Agregation: Professor(PID, Name, Course, College.Name)

• Composition: Department(Name, Building, College.Name)

College

Name pk
Country

Department

Name pk
Building

College

Name pk
Country

Professor

PID pk
Name
Course

UMLDATABASES 35

INHERITANCE TRANSLATION

• The relational model doesn’t feature inheritance. We are forced to “improvise” a
solution.

• There are three feasible approaches:

• One table for the superclass and one table for each subclass: Each subclass’
table contains the parent’s “pk” and the new attributes.

• Useful for disjoint and incomplete inheritance.

• One table for each subclass: Each subclass’ table contains all attributes of
its class and the superclass.

• Useful for disjoint and complete inheritance.

• One table for all classes: The table contains all attributes of the superclass
and all subclasses.

• Useful for overlapping inheritance.

• Which is the best option depends on the specific situation we’re in.

UMLDATABASES 36

DISJOINT AND INCOMPLETE INHERITANCE
TRANSLATION EXAMPLE

ForeignStudent

Country
Visa

DomesticStudent

SID pk
Name
Score
Course

DomesticStudent(SID, Name, Score, Course)

ForeignStudent(SID, Country, Visa)

UMLDATABASES 37

DISJOINT AND COMPLETE INHERITANCE
TRANSLATION EXAMPLE

ForeignStudent(SID, Name, Score, Course, Country, Visa)

DomesticStudent(SID, Name, Score, Course)

ForeignStudent

Country
Visa

DomesticStudent

Student

SID pk
Name
Score
Course

UMLDATABASES 38

OVERLAPPING INHERITANCE TRANSLATION
EXAMPLE

ForeignStudent

Country
Visa

ActiveStudent

Course

Student

SID pk
Name
Score

Student(SID, Name, Score, Country, Visa, Course)

UMLDATABASES 39

UML AND JAVA

UMLDATABASES 40

UML AND JAVA

• Since UML was designed to represent object-oriented data, its translation to Java
is easy.

• Most correspondences are direct:

• UML classes as Java classes.

• Associations as using objects from other classes.

• Composition as an association created in the constructor.

• Aggregation as an association with the proper multiplicity.

• Inheritance as Java inheritance through “extends”.

• Realization as Java inheritance through “implements”.

• There’s software that can automatically generate skeleton Java code from UML
and vice versa.

• One of them is the EMF framework.

UMLDATABASES 41

OBJECT RELATIONAL MAPPING

UMLDATABASES 42

• ORM (Object Relational Mapping) is a way to translate objects into relational tables,
and vice-versa.

• Follows the same translations explained in this unit, but with objects of a
programming language instead of UML class diagrams.

• Realizes the CRUD (Create, Read, Update, Delete) operations.

• Identity (a==b) and equivalence (a.equals(b)) are not the same.

• JPA (Java Persistence API) is a Java ORM framework.

• It’s included with the JDK since version 1.6.

• It’s a set of interfaces that need to be implemented by a particular solution.
We’ll use EclipseLink.

• It’s configured with XML documents and annotations.

• Classes that represent data are called entities that are controlled by an entity
manager.

• Accepts SQL and its own SQL-like object-oriented query language: JPL

ORM PROBLEMS (I)

UMLDATABASES 43

• ORM tends to makes life easier... but it’s not easy:
polymorphism, inheritance, association vs. composition...

• It’s said that ORM is the Vietnam war of Computer Science

• ORM isn’t a silver bullet. It introduces it’s own set of problems:

• Who owns the schema?

• The relational model

• The object-oriented model

• Both? Dual schema problem: Both views need to be kept updated

• Identity issues:

• Identity vs. equality

• Several sessions against the same DBMS

• Isolation and concurrency:
CAP (consistenty, availability, partitioning) theorem

ORM PROBLEMS (2)

UMLDATABASES 44

• ORM isn’t a silver bullet. It introduces it’s own set of problems:

• Retrieval mechanism concern. Alternatives:

• Query by example: Sample object

• Query by API: Query objects

• Query by language: SQL-like language.

• Partial object problem:

• Object orientation: All object fields are loaded.

• Relational model: Only the desired columns are loaded.

• Compromise?: Lazy loading

