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During pregnancy, changes in carbohydrate, amino acid and lipid metabo­
lism occur to ensure the continuous supply of nutrients to the fetus despite 
intermittent maternal food intake. While adaptations of carbohydrate and amino 
acid metabolism in pregnancy are reasonably well known, alterations in lipid 
physiology and their significance for fetal growth are still little understood. The 
purpose of this chapter is to review the overall metabolic changes that take 
place in pregnancy under normal and diabetic conditions, with special attention 
being given to those related to lipid metabolism. 

Changes Occurring in the Mother during Pregnancy 
Affecting Fetal Growth 

The continuous supply of metabolites derived from the maternal circula­
tion, across the placenta, sustain fetal development. Whereas the most abundant 
nutrient crossing the placenta is glucose, followed by amino acids, the transfer 
of lipid components is limited [ 1]. However, lipids play a major role in fetal 
development, as shown by changes in their availability, such as those produced 
by variations in dietary fat composition, which are known to have major impli­
cations on fetal and postnatal development [2]. In addition, deviations from 
normal maternal plasma lipid status, such as hypercholesterolemia, can trigger 
pathogenic events in the fetus and may influence atherosclerosis later in life [3]. 

During the first two thirds of pregnancy the mother develops hyperinsuline­
mia and normal or even enhanced insulin sensitivity [ 4, 5], which in combination 
with hyperphagia and limited fetal growth allows her to store a large proportion 
of the nutrients she eats causing an accumulation of fat stores. During the last 
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Fig. 1. Schematic representation of major interactions of maternal metabolism during 
late pregnancy with special emphasis on lipid metabolism and with indication of their conse­
quences for the availability of substrates to the fetus and the controlling role of insulin resis­
tance (I.R.). + = Activated steps; - = inhibited steps; TG = triacylglycerols; EC = esterified 
cholesterol; CETP = cholesterol ester transfer protein; EFA = essential fatty acids; 
LCPUFA = long-chain polyunsaturated fatty acids. 

third of gestation the mother switches from the previous anabolic condition to a 
catabolic one permitting an enhanced transfer of nutrients through the placenta 
to sustain the rapid fetal growth. This catabolic condition is enhanced under fast­
ing conditions, and is specially noticed in terms of an enhanced breakdown of 
lipid stores by lipolysis in adipose tissue, and is facilitated by the development of 
an overt insulin-resistant condition [6] (fig. 1 ). 

Poorly controlled diabetes during the first 7 weeks of human pregnancy 
has been associated with a spectrum of developmental abnormalities including 
pre-implantatory embryo loss, increased resorption rate, induction of congeni­
tal anomalies, and embryonic developmental and growth delays. Although the 
mechanism of these effects in humans remains unknown, laboratory studies 
from diabetic animals have implicated maternal hyperglycemia as the principal 
teratogenic agent. Several closely interrelated pathways have been shown to 
be involved in the molecular mechanisms of hyperglycemia-induced tissue 
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damage: overproduction of reactive oxygen species, activation of protein kinase 
C isoforms, alteration in arachidonic acid metabolism leading to altered 
prostaglandin and nitric oxide production, increased hexosamine pathway flux, 
enhanced formation of advanced glycation end products and increased polyol 
formation. 

Distinct from the impaired development that results from poorly controlled 
diabetes during early pregnancy, events occurring as a result of poor control 
during the latter two thirds of gestation include accelerated fetal growth and a 
risk oflarge-for-gestational age infants, respiratory distress syndrome, neonatal 
hypoglycemia, neonatal hypocalcemia and neonatal hypomagnesemia. It was 
initially proposed that overgrowth of the fetus in maternal diabetes was the 
result of increased delivery of glucose to the fetus, which consequently devel­
ops premature maturation of pancreatic insulin secretion, and subsequent 
hyperinsulinemia which together with the excess availability of glucose results 
in overgrowth of the fetus [7]. Formerly, it was proposed that overgrowth of the 
fetus of the diabetic mother was the result of the integrated impact of multiple 
maternal nutrients on fetal development [8]. Reports relating birth weights in 
diabetic pregnancies to maternal amino acid levels and maternal triacylglycerol 
levels support the view that fetal growth is controlled by several metabolic fac­
tors, maternal glucose being one of them. 

Carbohydrate Metabolism 

Glucose is the primary energy source of fetoplacental tissues. Under normal 
conditions, during early pregnancy, basal glucose and insulin concentrations do 
not differ from nongravid values [9], and hepatic gluconeogenesis is unchanged 
[IO]. However, during late pregnancy the mother tends to develop hypoglycemia, 
which is especially evident during fasting. Indirect studies in women [ 11] and 
direct experiments in rats [ 12] have shown that the rate of gluconeogenesis is 
enhanced during pregnancy under fasting conditions, the effect being especially 
manifest when glycerol is the studied substrate [ 13]. Thus, gestational hypo­
glycemia occurs despite the enhanced gluconeogenesis and decreased consump­
tion of glucose by the insulin-resistant tissues (fig. I), and is therefore the result 
of enhanced utilization of glucose as a consequence of the high rate of placental 
transfer of glucose [ 14]. The placental transfer of glucose is carried out by facil­
itated diffusion according to concentration-dependent kinetics, being therefore 
dependent on the positive maternal-fetal glucose gradient, which is maintained 
by the low concentration of glucose in fetal circulation. 

Carbohydrate metabolism has been studied in obese and nonobese women 
who were predisposed to and developed gestational diabetes mellitus (GDM) [15]. 
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In longitudinal studies of lean women with GDM a progressive decrease in 
first-phase insulin response in late gestation was found, whereas first-phase 
insulin response in obese women developing GDM did not change but second­
phase insulin response to intravenous glucose challenge increased [ 16]. Basal 
glucose production increases similarly in patients with GDM and in control 
subjects throughout gestation, but in late pregnancy insulin suppression of 
hepatic glucose production is less in GDM patients than in controls. It was 
found that in women with insulin-treated GDM at 32-36 weeks of gestation the 
total energy expenditure, basal metabolic rate, whole-body net carbohydrate and 
exogenous (dietary) glucose oxidation did not differ from control subjects [17]. 
Basal glucose concentrations decrease with advancing gestation in women 
developing GDM, and although at late gestation they have increased fasting 
insulin levels and decreased hepatic insulin sensitivity, hepatic glucose produc­
tion was found either increased or unchanged in women with GDM compared 
to control women. Endogenous hepatic glucose production was shown to 
remain sensitive to increased insulin concentration in normal pregnancy, but 
was less sensitive in GDM [10]. In overweight patients with GDM, similar rates 
of fasting glucose appearance are achieved, but with elevated insulin concentra­
tions relative to pregnant control subjects [ 18]. Total energy expenditure, basal 
metabolic rate and whole-body glucose utilization did not differ between 
insulin-treated GDM patients and controls [17]. 

Amino Acid Metabolism 

The accretion of protein is essential for fetal growth, and nitrogen retention 
and protein synthesis are increased in pregnancy in both maternal and fetal 
compartments [19]. Nitrogen balance is improved and dietary protein is used 
more efficiently in late pregnancy [20]. A decrease in most maternal amino acid 
concentrations occurs both during early pregnancy, before the accretion of 
maternal or fetal tissues, and during late pregnancy. Since insulin infusion in 
healthy adults decreases both plasma amino acid levels and protein breakdown, 
the decrease in plasma amino acid levels and the lower rate of appearance 
of leucine found during normal pregnancy [21] indicate that the pregnancy­
associated resistance to insulin does not involve muscle protein breakdown. 
There are also studies in which a decreased insulin sensitivity manifested by a 
decreased suppression of leucine turnover during insulin infusion in late normal 
pregnant women, and an increase in basal leucine turnover in women with 
GDM were found [15]. Studies of protein metabolism in fasted pregnant 
diabetic subjects been have shown to have normal [ 18] or higher rates of protein 
breakdown and oxidation but protein synthesis rates similar to normal pregnant 
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subjects [22], whereas well-controlled type 1 diabetes was found to cause no 
abnormalities in protein breakdown, synthesis or oxidation [23]. Plasma levels 
of branched chain amino acids (leucine, isoleucine, and valine) were found to 
be higher in GDM women during late pregnancy, whereas no change was found 
in several other amino acids (aromatics, phenylalanine and tyrosine, and pro­
line ). Also, there were others like glycine and threonine that were found to be 
lower in GDM than in normal control women. Although quantification of 
leucine and phenylalanine kinetics using stable isotope-labeled tracers showed 
no difference between GDM and control subjects [18], there are reports show­
ing a higher rate ofleucine nitrogen turnover in GDM women compared to nor­
mal subjects [24]. All of this suggests a significant alteration in maternal 
protein and amino acid metabolism in GDM women. 

Distinct from glucose, the concentration of amino acids in fetal plasma is 
even higher than that found in the mother, because placental transfer of amino 
acids is carried out by an energy-dependent process, using selective transporters. 
This ensures the appropriate availability of these essential precursors to the fetus 
and may actively contribute to the tendency to maternal hypoaminoacidemia. 
Amino acids have a greater effect than glucose in stimulating fetal insulin secre­
tion, and therefore changes in their delivery to the fetus may have profound 
consequences on fetal growth. The transport of neutral amino acids, which is 
mediated by the system A amino acid transporter, across the syncytiotrophoblast 
microvillous plasma membranes from placentas of women with diabetes has 
been shown to be either not affected [25], decreased [26] or even increased [27]. 
The uptake of leucine, but not of lysine or taurine was found increased in 
microvillous plasma membranes from placentas of GDM but not in those from 
type I diabetic women [27]. Most of these changes did not correlate with infant 
size, suggesting that they are not the primary cause for accelerated fetal growth 
in diabetic pregnancy. 

Maternal Lipid Metabolism 

Accumulation oflipids in maternal tissues as the result of major changes in 
adipose tissue metabolism and the development of maternal hyperlipidemia are 
the two most characteristic features of lipid metabolism during pregnancy. 

Adipose Tissue Metabolism 
Fat accumulation during pregnancy takes place during the first two thirds 

of gestation and occurs in both women [28] and experimental animals [29]. 
Body fat accumulation during early pregnancy appears to be the result of both 
hyperphagia and enhanced lipid (fatty acid and glyceride glycerol) synthesis in 
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adipose tissue [14], and is driven by the enhanced adipose tissue insulin respon­
siveness found in this early stage of pregnancy [2]. 

The accumulation of maternal fat stops during the last third of gestation as a 
consequence of enhanced adipose tissue lipolytic activity. Increased lipolysis of 
adipose tissue fat stores occurs in both women and rats during the last third of 
gestation, the change being especially manifest under fasting conditions [30-32]. 

The products of adipose tissue lipolysis, free fatty acids (FFA) and 
glycerol, are released, in large part, into the circulation. Since the placental 
transfer of these products is quantitatively low [1], their main destination is 
the maternal liver where, after conversion into active forms, acyl-CoA and 
glycerol-3-phosphate, respectively, they are partially reesterified for the synthesis 
of triacylglycerols that are released into the circulation as part of very low 
density lipoproteins (VLDLs). In addition, glycerol may be used for glucose 
synthesis and FFA for 13-oxidation to acetyl-CoA leading to energy production 
and ketone body synthesis; these pathways also increase markedly under fasting 
conditions in late pregnancy [12, 33]. 

Since insulin inhibits adipose tissue lipolytic activity, hepatic VLDL secre­
tion, gluconeogenesis and ketogenesis, the insulin-resistant condition of late 
pregnancy contributes to the increased adipose tissue lipolysis and the 
increased hepatic VLDL production, gluconeogenesis and ketogenesis at late 
pregnancy under fasting conditions (fig. 1 ). Furthermore, since the underlying 
pathophysiology of GDM is a function of decreased maternal insulin sensitivity 
or increased insulin resistance, those pathways become further enhanced in this 
condition, explaining the increase in plasma FFA and ketone bodies consis­
tently seen in diabetic pregnancy [34, 35]. 

Maternal Hyperlipidemia 
Enhanced maternal adipose tissue lipolytic activity during late gestation is 

associated with hyperlipidemia, mainly corresponding to increases in triacyl­
glycerols, with smaller rises in phospholipids and cholesterol in the circulation. 
The greatest increase in plasma triacylglycerols corresponds to VLDL and 
results from enhanced production by the liver and decreased removal from the 
circulation as a consequence of reduced adipose tissue lipoprotein lipase (LPL) 
activity [36]. 

During normal pregnancy there is also an enrichment of triacylglycerols in 
other lipoprotein fractions that do not normally transport them, like low density 
lipoproteins (LDL) and high density lipoproteins (HDL) [36]. The abundance 
of VLDL triacylglycerols in the presence of an increase in cholesteryl ester 
transfer protein (CETP) activity which takes place at mid gestation contributes 
to this accumulation of triacylglycerols in LDL and HDL [37] (fig. I). A further 
factor contributing to this effect is the decrease in hepatic lipase activity which 
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also occurs during late pregnancy [36], decreasing the conversion of buoyant 
HDL2b triglyceride-rich particles into small HDL3 triglyceride-poor particles, 
allowing a proportional accumulation of the former [36]. 

Both the insulin-resistant condition and the higher concentration of 
estrogen are thought to be responsible for the hypertriacylglycerolemia of preg­
nancy. As commented above, the insulin-resistant condition contributes both to 
the enhanced adipose tissue lipolytic activity which speeds up the transport of 
glycerol and FFA to the liver and their subsequent conversion into circulating 
VLDL triacylglycerols, and to the decreased LPL activity [38]. The increase in 
plasma estrogen concentrations during gestation also contributes to maternal 
hypertriacylglycerolemia since it enhances hepatic production of VLDL [39] 
and decreases the expression and activity of hepatic lipase [ 40]. 

Although exaggerated hypertriacylglycerolemia and lower LDL and HDL 
cholesterol have been found in diabetic pregnancy, there are reports which 
show no change in the maternal lipoprotein profile [34] or even decreased 
triacylglycerol levels [41]. Neither differences in the type of diabetes, degree 
of metabolic control or even the time of pregnancy studied explains this 
different response. As commented above, besides insulin resistance, hyperlipi­
demia occurring during gestation under normal conditions is driven by the 
increases in steroid hormones. Since plasma levels [34] as well as the level of 
sex hormone binding globulin [ 42] have been found decreased in diabetic 
women during early pregnancy or in those women in whom GDM subsequently 
developed, it is proposed that the degree of metabolic control and sex hormonal 
dysfunction may determine the development or lack of development of dyslipi­
demia in diabetic pregnant women, and this could explain the variety of 
reported findings. 

Placental Transfer of Lipid Metabolites 
Although triacylglycerols circulating in plasma lipoproteins do not directly 

cross the placental barrier [I], essential fatty acids from maternal diet, which 
are mainly transported as triacylglycerols in triacylglycerol-rich lipoproteins in 
maternal plasma [43], must be made available to the fetus. The presence of 
VLDL/apo E receptor, LDL receptor-related proteins and HDL receptors in 
placental trophoblast cells allow these lipoproteins to be taken up by the 
placenta. In addition, the trophoblasts also express different lipolytic activities 
including LPL, phospholipase A2 and an intracellular lipase. Thus, maternal 
triacylglycerols in plasma lipoproteins are either taken up intact through the 
placenta receptors or, after hydrolysis, their constituent fatty acids are taken up 
by the placenta, where the fatty acids are reesterified to synthesize glycerolipids 
to provide a reservoir of fatty acids. Subsequent intracellular hydrolysis of the 
glycerolipids releases fatty acids that diffuse to fetal plasma. 
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Although smaller in proportion to lipoprotein triacylglycerols, maternal 
plasma FFA are also an important source of polyunsaturated fatty acids (PUFA) 
for the fetus. In human placenta there is a membrane fatty acid-binding protein 
(FABP pm) [ 44] which is responsible for the preferential uptake and transfer 
of certain PUFA: docosahexaenoic > a-linolenic > linoleic > oleic > arachi­
donic acid [ 45]. The selective uptake of certain fatty acids may also contribute 
to a degree of selective placental metabolism such as their conversion to 
prostaglandins and other eicosanoids, the incorporation of some fatty acids into 
membrane phospholipids, fatty acid oxidation and fatty acid synthesis. The 
combination of all these processes determines the actual rate of placental fatty 
acid transfer and its selectivity, resulting in the proportional enrichment of cer­
tain PUFA, such as arachidonic acid and docosahexaenoic acid, in the fetal 
compartment compared to the maternal compartment. 

Placental transfer of maternal cholesterol has been shown to be effective in 
different species, such as rat, guinea pig and rhesus monkey. Cholesterol syn­
thesis in fetal tissues has also been shown to be highly active in some species. In 
humans, the comparison of maternal plasma concentrations of lipoprotein cho­
lesterol and those in umbilical cord blood cholesterol gave positive correlations 
in some studies [ 46] but no correlation in others [ 4 7]. Gestational age seems to 
influence these comparisons, since in fetuses younger than 6 months, plasma 
cholesterol levels significantly correlate with the maternal ones [ 48], suggest­
ing that, at these early stages of gestation, maternal cholesterol actively con­
tributes to fetal cholesterol. At term, although there is delivery of cholesterol 
from placenta to the fetus, its contribution to the fetal plasma cholesterol pool is 
minor, and endogenous cholesterol synthesis appears to be the ·principal source 
of fetal cholesterol. 

Although intrinsic changes in placental capability to lipid transfer in dia­
betic women cannot be discarded, altered lipid profile on the maternal side 
affects the quantity and/or quality of lipids being transferred to the fetus. In 
fact, maternal dietary fatty acids influence fetal lipid metabolism and con­
tribute to postnatal metabolic changes [2, 49]. GOM patients with macrosomic 
fetuses have been associated with high triglyacylglycerol, VLOL and HOL tria­
cylglycerol levels [50]. Besides, macrosomic newborns of poorly controlled 
diabetic mothers have higher lipid and lipoprotein lipid levels than those found 
in controls [51 ], and levels of cholesterol, phospholipids and triacylglycerols in 
umbilical cord were found enhanced and correlated with FFA in fetuses of type 
I diabetes mellitus (OM) mothers [52]. The increased concentration of FFA in 
fetal blood of type I OM pregnancies is probably caused by increased delivery 
from maternal circulation, because an increased maternofetal gradient has been 
reported in diabetes [53]; this may drive the synthesis of cholesterol, triacyl­
glycerols and phospholipids in the fetus of type I OM mothers. Moreover, the 
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placental transport of triacylglycerol fatty acids may be exaggerated in diabetes, 
where LPL declines in adipose tissue, contributing to maternal hypertriacyl­
glycerolemia, but not in placenta [54]. 

During the perinatal period, maternal supplies of arachidonic acid and 
docosahexaenoic acid are the likely major sources of long-chain PUFAs to the 
fetus. Despite the same proportion of phospholipid arachidonic acid and 
docosahexaenoic acid in control and GDM women, fetal erythrocyte phospho­
lipid arachidonic acid and docosahexaenoic acid are lower in women with 
GDM than in control subjects [55], suggesting an impairment in the maternal 
transfer of these fatty acids to the fetus. 

Conclusion 

The continuous supply of metabolites derived from maternal circulation, 
across the placenta, sustains fetal development. Under normal conditions, during 
the first two thirds of gestation, the mother develops hyperinsulinemia and 
normal or enhanced insulin sensitivity, contributing to an accumulation of fat 
stores. During the last third of gestation the mother switches to a catabolic con­
dition, which is facilitated by her insulin-resistant condition and accelerates the 
availability of nutrients across the placenta. Poorly controlled diabetes during the 
first 7 weeks of human pregnancy has been associated with a spectrum of abnor­
malities in embryonic development, including embryo loss, induction of con­
genital anomalies and growth delay, maternal hyperglycemia being the principal 
teratogenic agent. However, poorly controlled diabetes during the latter two 
thirds of gestation accelerates fetal growth, and induces large-for-gestational age 
infants, respiratory distress syndrome and neonatal hypoglycemia. Studies on 
carbohydrate metabolism have shown that insulin suppression of hepatic glucose 
production is less decreased in GDM patients than in controls. An increase in 
basal leucine turnover and increased plasma branched amino acid levels were 
also found in GDM women at late pregnancy, suggesting a significant alteration 
in maternal protein and amino acid metabolism. Since enhanced adipose tissue 
lipolysis and liver production ofVLDL triacylglycerol and decreased extrahep­
atic LPL activity during late pregnancy are caused by the insulin-resistant condi­
tion, a further decrease in insulin sensitivity in pregnant diabetic women would 
accelerate these changes and exaggerate the development of maternal hypertria­
cylglycerolemia. Since increased estrogen concentrations in late pregnant 
women actively contribute to the enhanced liver production of VLDL triacyl­
glycerol, the decreased estrogen levels found in pregnant diabetic women may 
counteract such a change, avoiding the development of such exaggerated hyper­
triacylglycerolemia in certain diabetic subjects. These changes in maternal 
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metabolism together with alterations in intrinsic placental function affect the 
quantity and quality of nutrients reaching the fetus, and consequently contribute 
to altered fetal growth. 
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