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ABSTRACT 13 

 14 

Increased caloric intake associated with decreased physical activity and the presence of 15 

thrifty genes that are theoretically adapted to enhance the energy storage efficiency, 16 

cause metabolic changes that result in diet-related diseases or disorders. Such 17 

phenotypes are prevalent in populations of developed countries and their incidence is 18 

continuing to rise. Therefore, early diagnosis of diet-related diseases is an exciting field 19 

of research. The application of ‘omics’ technology, particularly metabolomics, has 20 

revealed the metabolic changes associated to diet-related diseases and also 21 

consequences of diet intervention in a global un-targeted way. The on-going 22 

development of dietary ideal models could elucidate the sequence of events, starting 23 

with the interaction between dietary habits and genetic adaptations that cause the 24 

metabolic changes induced as well as auxiliary symptoms and associated diseases. In 25 

this review, a range of mass spectrometry techniques applied to metabolomics of diet-26 

related diseases is discussed, including the combination of metabolomics with other 27 

studies to reveal systems properties of the diseases. Since it is difficult to set up a 28 

clinical study based on the probability of finding exploratory biomarkers to be applied 29 

in wide-population screening, many metabolomics studies have revealed biomarkers of 30 

the complications of the disease, which could have power as prognostic biomarkers. 31 

 32 

 33 
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1. Introduction 39 

 40 

1.1. Analysis of the Metabolome: Metabolomics 41 

 42 

The metabolome is the complete set of small molecules (typically, less than 1500 Da) 43 

arising from protein activity (anabolism and catabolism) in living systems. There are 44 

four major approaches used in metabolomics studies: (i) targeted analysis, (ii) 45 

metabolite profiling, (iii) metabolic fingerprinting and (iv) metabolic flux analysis. 46 

Targeted analysis is the classical analytical approach to measure the concentration of a 47 

limited number of known metabolites precisely. Metabolite profiling, which can be 48 

considered an extension of target analysis is the simultaneous measurement of a set of 49 

related metabolites that are (bio)chemically related. Metabolic fingerprinting does not 50 

attempt to identify or precisely quantify all the metabolites in the sample; it considers 51 

the fingerprint as a unique pattern characterising a snapshot of the metabolism in a 52 

particular cell line or tissue and is most useful in biomarker discovery and diagnostics 53 

[1-3]. Metabolic flux analysis involves tracing certain elements through metabolic 54 

pathways that results in a detailed quantification of fluxes, usually through central 55 

carbon metabolism. The latter is an important approach in metabolomics, but has not 56 

been included in this review since its application in diet-related diseases is only 57 

pioneering.  58 

 59 

Due to the large variability in physico-chemical properties of analytes, together with the 60 

enormous differences in concentrations, there is no single analytical technique that can 61 

fulfil all the requirements to provide adequate signal for all. Metabolome analysis is 62 

generally conducted through two detection techniques: nuclear magnetic resonance 63 

(NMR) or mass spectrometry (MS). Metabolomics with NMR has been recently 64 

reviewed elsewhere [4-6], and was the topic for a special issue . Although sensitivity is 65 

poorer in NMR than MS, the elucidation capabilities are unquestionable; the NMR 66 

profile could contain qualitative and quantitative information on hundreds of different 67 

small molecules present in the sample. Although metabolomics was first developed with 68 

NMR, in recent years MS has been the most commonly employed technique; from 2007 69 

to date there have been more than 70% of papers from this topic published. With regard 70 

to MS, two approaches can be considered, with different subtypes: the MS can be 71 
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hyphenated to a separation technique (gas chromatography-GC, liquid chromatography-72 

LC, capillary electrophoresis-CE, supercritical fluid chromatography-SFC) or not. MS 73 

benefits from detection permitted at high sensitivity and also structural elucidation 74 

based on spectral libraries and tandem mass spectrometry, even in complex biological 75 

samples. 76 

 77 

GC-MS is very well suited for the analysis of low-molecular weight (typically, less than 78 

400 amu). GC is excellent for characterisation of energy metabolism as it is highly 79 

appropriate for volatile derivatives of metabolites; amino acids, monosaccharides, fatty 80 

acids, disaccharides and cholesterol are easily identified in the chromatogram [7, 8]. 81 

Such metabolites are mostly hydrophilic, and therefore freely soluble in typical bio-82 

fluids such as serum/plasma or urine. CE-MS can be applied to the analysis of similar 83 

compounds to a certain extent, benefiting from reduced sample treatment compared to 84 

GC-MS [9, 10] but has different strengths and drawbacks. The most employed 85 

technique for metabolic fingerprinting is LC-MS, which involves the minimum 86 

requirement for sample treatment and alteration or hydrolysis of the metabolites during 87 

the analysis among the hyphenated techniques. [11-13]. The most common separation 88 

mode for LC-MS based metabolomic studies involves reversed-phase chromatographic 89 

separation of analytes. This is especially suited to metabolites with medium-low 90 

polarity, although analysis is limited since polar metabolites including sugars or amino 91 

acids that CE-MS and GC-MS typically analyse are not detected. Such metabolites can 92 

be analysed by LC-MS, however it requires the application of hydrophilic liquid 93 

chromatography (HILIC) [14-16]. The most high-throughput approach for MS in 94 

metabolomics, with respect to data acquisition, utilises direct injection with no prior 95 

separation of analytes in the sample. For this reason, it is often the preferred technique 96 

for clinical trials where sample sizes are large but the intricacy of information required 97 

from each is not high. A considerably less high-throughput form of direct MS that is 98 

pioneering in metabolomics is mass spectrometry imaging (MSI). This technique 99 

involves the analysis of a sample surface from which a chemical map can be created 100 

based on collecting spectra-per-pixels. 101 

 102 

1.2. Metabolomics in clinical research 103 

 104 
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In the field of clinical research there are recent reviews which highlight both the 105 

potential and relevance of metabolomics for biomarker discovery and the design of new 106 

therapeutics [17-21]. Epidemiological and clinical studies have concluded that many 107 

diseases with high rates of morbidity and mortality worldwide are associated with diet-108 

related incidences and include cardiovascular disease (heart disease and stroke), 109 

diabetes and cancers. The goals of metabolomics for diet-related disease research 110 

(Figure 1) are to improve the search for biomarkers that would permit determination of 111 

the cause of the disease as well as to elucidate the biochemical mechanisms involved in 112 

the development of the disease status. Ultimately, it may be possible using this approach 113 

to improve early diagnosis and accurate prognosis, as well as aid adequate monitoring 114 

including detecting early markers of target organ damage. 115 

 116 

The term diet-related disease can refer to a wide variety of diseases and disorders 117 

affecting different organs and systems. Nevertheless, not all diseases related to diet are 118 

considered diet-related diseases: the lack of nutrients (proteins, vitamins, and minerals) 119 

may give rise to specific complications known as deficiency diseases. In addition, the 120 

management of inborn errors of metabolism is mainly based on specific diets without 121 

food constituents that are safe for general population but harmful for those affected. For 122 

example, the onset of phenylketonuria (PKU) can be prevented through a diet deficient 123 

in phenylalanine [22]. Diabetes mellitus (DM), cardiovascular Disease (CVD), ischemic 124 

heart disease (IHD), and cerebrovascular disease (CBVD) are classified as the main 125 

diet-related diseases in addition to a range of cancers [23]. 126 

 127 

Research on human nutrition metabolomics has proven valuable [24-28], highlighting 128 

the potential for the interactions between nutrients and metabolism leading to metabolic 129 

alterations [29, 30]. It is accepted that in modern life, increased caloric intake associated 130 

with decreased physical activity and the presence of thrifty genes, theoretically adapted 131 

to enhance the energy storage efficiency, will result in metabolic changes that could 132 

result in diet-related diseases or disorders. Regardless of the disease, the risk is modified 133 

by diet, nutrient uptake, genetic profile and environmental factors (alcohol 134 

consumption, smoke, sedentary lifestyle). In some cases one disease or disorder can 135 

lead to others. For example, metabolic syndrome, impaired glucose tolerance, diabetes, 136 

obesity and dyslipidaemia increase the risk of cardiovascular events [31]. Conditions 137 
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such obesity, hyperlipidaemia, and insulin resistance have also been described to 138 

increment the risk of heart diseases [32].  139 

. DM is classified as type 1 when there is insulin deficiency and type 2 when genetic 140 

and metabolic defects in insulin action or secretion cause hyperglycemia. Although the 141 

management of all types of diabetes must include careful control of diet, nutrition 142 

disorders are associated only with type 2 diabetes; therefore most of the data herein 143 

mentioned are related to this. The worldwide prevalence of DM is increasing; the total 144 

number of people with diabetes is projected to rise from 171 million in 2000 to 366 145 

million in 2030 [33]. For this reason, the disease has been extensively researched and 146 

the application of metabolomics has been reviewed [34-38], including its association 147 

with CVD [39, 40].  148 

 149 

CVD covers an extended group of diseases including hypertension, heart failure and 150 

rheumatic heart disease. IHD and CBVD are also closely related. In general, CVDs have 151 

been studied through metabolomics and this has been previously reviewed [41-44]. 152 

IHDs (e.g. myocardial angina, heart attack) are characterised by inadequate blood 153 

supply to a portion of the myocardium. The main cause of myocardial ischemia is 154 

atherosclerotic disease of the coronary arteries that are responsible for irrigating the 155 

myocardium. Its incidence is increasing not only in developed countries but also in 156 

developing countries where it has been estimated to rise by 120 % in women and 127 % 157 

between 1990 and 2020 [32].  158 

 159 

Cancers of the mouth, throat, oesophagus, lung, breast, endometrium, stomach, colon, 160 

and rectum can be modified by food and nutrition (including alcohol), and by physical 161 

activity and therefore can be considered diet-related diseases. While consumption of 162 

processed food increases the risk of some cancers, epidemiological studies have 163 

suggested that the consumption of diets rich in whole cereals reduce the risk of cancer 164 

[45]. Therefore diet can modify the risk of cancer both positively and negatively. The 165 

particular effect of carbohydrate modification on serum metabolic profile has been 166 

studied with metabolomics [46]. Results suggest that the dietary carbohydrate 167 

modification alters the serum metabolic profile, especially in lyso-phosphatidylcholine 168 

(lysoPC) species, and may, thus, contribute to pro-inflammatory processes which in turn 169 

promote adverse changes in insulin and glucose metabolism. 170 

 171 
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Obesity, hypertension, atherosclerosis and metabolic syndrome are the main disorders 172 

associated with diet related diseases. Atherosclerosis that is one of the main disorders 173 

associated with CVDs is characterised by the accumulation of lipids in large arteries and 174 

it is estimated that over 25 million people in the US have clinical manifestation of 175 

ASVD [47]. The process of atherosclerosis involves lipid disturbances, platelet 176 

activation, endothelial dysfunction, chronic inflammation, oxidative stress and altered 177 

matrix metabolism and as a result the vessel wall thickens affecting blood flow. It is 178 

known that its development involves lipid and inflammatory components and that 179 

metabolomics can contribute to an increased understanding of its mechanisms [48, 49].  180 

 181 

Metabolic Syndrome is associated to and increases the risk of CVD and DM. It is 182 

clinically recognised by hypertriglyceridemia, low levels of high-density lipoprotein 183 

(HDL), hyperglycaemia, hypertension and central obesity. According to the third 184 

national health and nutrition examination survey (NHANES III), approximately 47 185 

million adults suffer from metabolic syndrome in the US [50]. The pathogenesis of 186 

metabolic syndrome is still unknown; however the principal cause is insulin resistance 187 

due to an inability of peripheral tissues to increase input and utilisation of glucose, 188 

which is especially problematic in the liver, skeletal muscle and adipose tissue. 189 

Metabolic syndrome is treatable and changes in lifestyle can reduce the risk. The 190 

metabolic mechanisms of this syndrome have been reviewed [24, 51, 52].  191 

  192 

The purpose of this review is to discuss the contributions from metabolomics in the 193 

study of diet-related diseases with particular focus on MS based analytical techniques. 194 

Examples will be given to highlight the effectiveness of MS coupled with prior 195 

separation of metabolites (LC-MS, GC-MS and CE-MS) as well as direct analysis 196 

techniques in MS, where the advantages and disadvantages of each will become 197 

apparent. In addition to the analytical platforms, the value of systems biology to study 198 

complex diseases such as diet-related diseases will be discussed through reviewing the 199 

combination of metabolomics with other 'omic' techniques. 200 

 201 

2. Analytical platforms for metabolomics of diet-related diseases 202 

 203 
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The choice of platform depends largely on the application with respect to the samples 204 

for analysis as well as the desired information required from the metabolomics 205 

experiment. Some of the main considerations for selecting an appropriate platform are 206 

summarised in ¡Error! No se encuentra el origen de la referencia.  207 

 208 

Table 1: Choosing the correct MS tool for metabolomics. Techniques are assigned stars (* = lower, ** = medium, 209 
*** = higher) based on their appropriateness to satisfy each parameter. Techniques are classified into 5 categories: 210 
gas chromatography – mass spectrometry (GC-MS), liquid chromatography – mass spectrometry (LC-MS), capillary 211 
electrophoresis – mass spectrometry (CE-MS) and direct mass spectrometry (DMS) and imaging mass spectrometry 212 
(MSI) 213 

  LC-MS GC-MS CE-MS DMS MSI 

Metabolite chemistry High LogP ** * * *** ** 

 Low LogP ** *** *** * ** 

 Negative charge *** *** ** ** ** 

 Positive charge ** ** *** * * 

 m/z < 80 ** *** * ** ** 

 m/z > 80 *** *** ** *** *** 

Sample type Tissue ** ** ** ** *** 

 Bio-fluids *** *** *** ** * 

 Cell culture ** ** ** ** ** 

Metabolomics approach Targeted ** *** * * * 

 Non-targeted *** ** ** ** ** 

Analytical specifications Sample preparation *** * *** *** ** 

 Throughput ** ** ** *** * 

 MS Mass accuracy/resolution ** * * *** ** 

 Inter-day reproducibility ** *** * ** * 

 Nº metabolite features *** ** ** ** * 

Data  Databases ** *** ** * * 

 Data analysis ** ** ** *** ** 

 Information  ** ** ** * *** 

 214 

Choices can be made based on a number of parameters: for example the chemical class 215 

of the metabolites to be analysed, the type of sample, whether or not the experiment will 216 

follow a targeted approach etc. Additionally, a technique can be chosen based on the 217 

ease of data handling with respect to the availability of resources for compound 218 

identification (databases) or the ease of data analysis but also the level of information 219 

each offers with respect either to the level of metabolite coverage offered or to how well 220 

data can be biologically interpreted. The table provides a guide to which techniques are 221 

stronger or weaker for different aspects of a metabolomics experiment. Figure 2 shows 222 

the features of each MS platform for studying diet-related diseases that can be 223 

distinguished both by the classes of compounds they are best for analysing and by the 224 

key feature that sets them apart from the other techniques.  225 

2.1. Gas chromatography - mass spectrometry 226 

 227 

GC-MS is limited to volatile, thermally stable, and energetically stable compounds and 228 

those that can be made volatile by derivatisation. For that reason, the main drawbacks 229 
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are i) limited metabolite coverage; ii) laborious sample pre-treatment and iii) 230 

derivatisation introduces variability and produces artefacts; however, the main strengths 231 

include i) involvement of a standardised ionisation source (electronic impact) at  70 eV 232 

that leads to reproducible mass spectra and highly transferable electron ionisation MS 233 

spectral libraries that allow compound identification through mass spectral library 234 

matching; ii) highly reproducible retention indices can also be incorporated to spectral 235 

libraries and improve identification of isomers; iii) metabolites covered by GC-MS are 236 

related to central carbon metabolism and other fundamental metabolic pathways. 237 

 238 

Sample treatment strategies are well established [53] and are based on the 239 

trimethylsilyl(TMS)-methoxime(MeOx) derivatives after protein precipitation, where 240 

tissues are previously extracted. In that sense a method was validated for colon tissue 241 

profiling [54]. Each colon tissue sample was ultra-sonicated with 1 mL of a mixture of 242 

chloroform/methanol/water in the ratio of 20:50:20 (v/v/v), followed by centrifugation 243 

and collection of supernatant that is later derivatised in the same way.  244 

Urine poses a problem in GC-MS fingerprinting, because urea concentration in urine is 245 

so high that it influences the appearances of other compounds with lower concentration 246 

and is easy to contaminate the column and MS detector. The role of urinary metabolic 247 

profiling in systems biology research has been reviewed recently including urine 248 

collection and storage, GC-MS and data pre-processing methods (including depletion of 249 

urea via treatment with urease, protein precipitation with methanol, and trimethylsilyl 250 

derivatisation), chemometric data analysis and urinary marker metabolite identification. 251 

The authors conclude that GC-MS information is complementary to NMR and LC-MS 252 

[55]. A metabolomics method to investigate the urinary metabolic differences between 253 

hepatocellular carcinoma [56] (HCC, n = 20) male patients and normal male subjects (n 254 

= 20) has utilised GC-Q-MS. The urinary endogenous metabolome was assayed using 255 

chemical derivatisation followed by GC-MS. After GC-MS analysis, 103 metabolites 256 

were detected, of which 66 were annotated as known compounds. By a two sample t-257 

test statistics with p < 0.05, 18 metabolites were shown to be significantly different 258 

between the HCC and control groups.  259 

Recently a time-effective microwave-assisted oximation and silylation approach for 260 

metabolomic study of plasma samples has been described [57]. The results showed that 261 

microwave irradiation decreased the sample preparation time from approximately 180 262 

min to 5 min without loss of information for the metabolites in plasma samples. This 263 



10 
 

may prove to be an attractive alternative for high-throughput sample preparation in 264 

plasma metabolomics for studies with a large number of samples. After a study showing 265 

that sarcosine could be a potential marker for the diagnosis and prognosis of prostate 266 

cancer (PCa), a metabolomics approach utilising isotope dilution (ID) GC-MS evaluated 267 

sarcosine using [methyl-D3]-sarcosine as an internal standard. Microwave-assisted 268 

derivatisation (MAD) together with GC-MS was utilised to obtain the urinary 269 

metabolomic information [58]. Due to the derivatisation step, specific data validation, 270 

correction/filtering and normalisation procedures are necessary to ensure comparability 271 

between profiles and to avoid assigning biological significance to experimental biases, 272 

which are due mainly to incomplete derivatisation and the formation of multiple 273 

derivatives for some compounds [59, 60]. 274 

Regarding MS analysers, GC is often coupled to either TOF-MS or single quadrupole 275 

MS. The latter have the advantages of high sensitivity and good dynamic range but 276 

suffer from slower scan rates and lower mass accuracy relative to TOF-MS detectors. 277 

However, the availability, reliability, effectiveness, and affordable cost of GC-278 

quadrupole-MS analysers have made them a popular and robust metabolomics platform. 279 

Another alternative that shares similar characteristics to single quadrupole MS in terms 280 

of mass accuracy is the utlilisation of ion trap MS, although this analyser adds the 281 

option of isolating an specific ion and doing MS/MS 282 

 283 

Plasma samples from children with normal weight have been compared to those who 284 

are overweight or obese through metabolic profiling by GC-Q-MS [61]. Multivariate 285 

analysis revealed that the metabolic patterns of the three groups were different. 286 

Furthermore, several metabolites, including isoleucine, glyceric acid, serine, 2,3,4 287 

trihydroxybutyric acid and phenylalanine were screened as potential biomarkers of 288 

childhood obesity. In other study, a diagnostic model for gastric cancer has been 289 

constructed using GC-Q-MS and principal component analysis (PCA) [62]. Results 290 

showed that 18 metabolites were detected differently between the malignant tissues and 291 

the adjacent non-malignant tissues of gastric mucosa. Five metabolites were also 292 

detected differently between the non-invasive tumours and the invasive tumours. 293 

 294 

GC-Iontrap-MS has been employed to evaluate the major metabolic changes in low 295 

molecular weight plasma metabolites of patients with acute coronary syndrome (n = 9) 296 

and with stable atherosclerosis (n = 10) vs. healthy subjects without significant 297 
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differences in age and sex (n = 10) [63]. The three groups were successfully classified 298 

and citric acid, 4-hydroxyproline, aspartic acid, as well as fructose were observed to 299 

decrease while lactate, urea, glucose, and valine were increased in acute coronary 300 

syndrome patients vs. healthy people. This analytical platform was also employed in the 301 

fingerprinting of patients with stable carotid atherosclerosis vs. healthy subjects. In this 302 

study, 19 metabolites (isocitrate, glutarate, fructose, citrate, aspartate, lactate, tyrosine, 303 

glucose, 3-hydroxybutirate, serine and alanine, among others) were found altered in the 304 

plasma of patients with stable carotid atherosclerosis vs. healthy subjects [64]. 305 

Metabolomics has aided in the study of IHD by allowing identification of biomarkers 306 

useful for diagnosis. Vallejo et al. [63] used GC-MS to evaluate the metabolic changes 307 

associated with acute coronary syndrome and atherosclerosis, whereby a group of 29 308 

subjects: 9 with acute coronary syndrome without ST segment elevation (NSTEACS), 309 

10 with stable atherosclerotic disease of the carotid and 10 controls. Clear differences 310 

were observed in the profile of cases and controls, with a significant decrease in the 311 

levels of citric acid in NSTEACS patients. Hydroxyproline was also found to be 312 

decreased in NSTEACS patients and this fact could be related to the atheromatous 313 

plaque instability and increased risk of coronary heart disease. 314 

 315 

The GC-MS metabolic profiles of plasma samples from mice maintained on 12- or 15-316 

month long low (10 kcal%) or high (60 kcal%) fat diets were also obtained through GC-317 

Iontrap-MS [65]. The profiles of 48 out of the 77 detected metabolites were used in 318 

multivariate statistical analysis. Data mining suggested a decrease in the activity of the 319 

energy metabolism with age. In addition, the metabolic profiles indicated the presence 320 

of subpopulations with different physiology within the high and low-fat diet mice, 321 

which correlated well with the difference in body weight among the animals and current 322 

knowledge about hyperglycemic conditions. 323 

 324 

GC-TOF-MS technology offers high mass resolution, high mass accuracy, and fast scan 325 

speeds. The relatively faster scan rates associated with TOF-MS are extremely useful 326 

for the accurate deconvolution of overlapping high resolution or ultrafast GC peaks 327 

such as those encountered during complex metabolic mixture analyses. A recent 328 

application of GC-TOF-MS in metabolomics included large-scale metabolite profiling 329 

of human serum [66]. Apart from genetic alterations, development and progression of 330 

colorectal cancer has been linked to influences from nutritional intake, 331 
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hyperalimentation, and cellular metabolic changes that may be the basis for new 332 

diagnostic and therapeutic approaches. A set of paired samples of normal colon tissue 333 

and colorectal cancer tissue was analysed with GC-TOF-MS, resulting in robust 334 

detection of a total of 206 metabolites. Subsequent supervised analysis found 82 335 

metabolites to be significantly different at p < 0.01. Intermediates of the tricarboxylic 336 

acid (TCA) cycle and lipids were found down-regulated in cancer, whereas urea cycle 337 

metabolites, purines, pyrimidines and amino acids were generally elevated compared to 338 

normal colon mucosa [67].  339 

 340 

The serum metabolome of a primate model of in utero high-fat exposure has also been 341 

characterised by GC-TOF-MS. Data suggest that high-fat diet exposure as well as a 342 

maternal obese phenotype results in metabolome variations with 2-hydroxybutyrate,  343 

ascorbic acid, a-tocopherol, cholesterol and 3-hydroxybutyrate as significant metabolite 344 

markers [68]. Serum samples from 52 patients with systolic heart failure  and 57 345 

controls were analysed by GC-TOF-MS [69] and the raw data reduced to 272 346 

statistically robust metabolite peaks. A significant difference between case and control 347 

was observed for 38 peaks (p <5·10
-5

). Two such metabolites were pseudouridine, a 348 

modified nucleotide present in tRNA and rRNA and marker of cell turnover, as well as 349 

the TCA intermediate 2-oxoglutarate. 350 

 351 

A unique innovation in GC was the development of GC × GC, which offers 352 

dramatically increased separation efficiencies and peak capacities. In GC × GC, two 353 

capillary columns of different stationary-phase are selectivity coupled in series through 354 

a flow modulator. Effluents from the first column (usually a long non-polar column) are 355 

captured and transferred by the modulator onto the second column. The second column 356 

is normally a short polar or semi-polar column that quickly separates the effluent within 357 

seconds before the next effluent enters the column. The sharp and narrow peaks 358 

generated in fast GC or GC × GC require the use of fast scanning analyzers such as 359 

TOF-MS.  360 

 361 

Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry 362 

(GC×GC-TOF-MS) coupled with pattern recognition methods was applied to analyse 363 

plasma from diabetic patients and healthy controls. Five potential biomarkers including 364 

glucose, 2-hydroxyisobutyric acid, linoleic acid, palmitic acid and phosphate were 365 
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identified using this method [70]. In another example, glutamic acid, N-acetyl-glycine, 366 

3-hydroxy-2-methyl-butanoic acid and nonanedioic acid were shortlisted from GC×GC-367 

TOF-MS analysis as markers of recurrent breast cancer [71]. Despite this massive 368 

separation effort, the markers identified herein could be obtained with simpler 369 

procedures such as GC-Q-MS. 370 

 371 

A complementary approach to metabolite profiling by GC-MS is taken by employing 372 

stable-isotope labelling for flux analysis. Flux analysis emphasises the turnover of 373 

molecules through a number of enzymes. In most cases, stable-isotope glucose is used 374 

and is differentially labelled at one or more atom positions within the molecule. Flux 375 

through glycolysis or adjacent pathways (pentose-phosphate pathway, TCA cycle and 376 

gluconeogenesis) is then estimated by analysing relative enrichments in isotopes of 377 

metabolites comprised in these pathways in a dynamic way [72]. Flux analysis by 378 

GC-MS has also been shown to be useful to characterise the impact of pancreatic 379 

tumours on metabolic fluxes in different organs by use of a rat model [73]. 380 

 381 

 382 

2.2. Capillary electrophoresis - mass spectrometry 383 

 384 

Charged and polar, water soluble metabolites are best suited to analysis by CE-MS.  CE 385 

is considered a highly efficient, flexible separation technique that is both comprehensive 386 

and quantitative. One of its main assets for fingerprinting, where samples require 387 

minimum manipulation, is the capability to analyse complex matrices such as urine 388 

directly. This is possible because once compounds of interest have been measured, the 389 

capillary is rinsed and apparently no irreversible adsorptions take place, except when  390 

uncoated capillaries are used that can be modified with proteins and other compounds 391 

from the sample. Unfortunately, CE-MS has inherent limitations too. These are mainly 392 

low sensitivity and poor reproducibility. CE can be interfaced with various MS 393 

analysers, however TOF-MS is the most commonly used CE-MS analyser due to its fast 394 

acquisition rates which are necessary to statistically sample the narrow CE peaks while 395 

ionisation in CE-MS typically employs ESI. 396 

 397 

One of the earlier developments of CE-MS based methods for metabolic fingerprinting 398 

to study diet-related diseases came from Soga's group in 2003 [74]. This involved the 399 
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development of a non-targeted method for biomarker discovery in several types of 400 

cancer-specific profiles in human saliva [75]. 401 

 402 

CE-TOF-MS has been used to explore new serum biomarkers with high sensitivity and 403 

specificity for diabetic nephropathy (DN) diagnosis, through comprehensive analysis of 404 

serum metabolites with 78 diabetic patients [76]. Of the 289 profiled metabolites, 19 405 

metabolites were identified that could distinguish between DN patients with macro- 406 

albuminuria and diabetic patients without albuminuria. These identified metabolites 407 

included creatinine, aspartic acid, γ-butyrobetaine, citrulline, symmetric 408 

dimethylarginine (SDMA), kynurenine, azelaic acid, and galactaric acid. 409 

 410 

In an attempt to improve sensitivity, new interphases are being tested avoiding the 411 

dilution originated by the sheath liquid. Sheath-less CE-MS, using a porous tip sprayer, 412 

has been proposed for metabolic profiling of human urine [77]. However, these systems 413 

are still under development and do not work in a routine base. 414 

 415 

Another study involving CE-MS is related to metabolomics of CBVD. So far there 416 

aren't tools that allow an early diagnosis of CBVD and its patho-physiology is not 417 

completely understood. Hattori et al. (2010) [78] described a metabolomics study of 418 

cerebral artery occlusion in a mouse model, through the application of imaging mass 419 

spectrometry by matrix-assisted laser desorption ionisation (MALDI-MS) and CE-MS 420 

with ESI. Utilising both complementary techniques made possible the analysis of a 421 

major fraction of metabolites, including ATP, ADP, and AMP, all of them polar or 422 

ionic, by CE-MS and also allowed discrimination along the spatial distribution of the 423 

molecules by MALDI-MS. The authors distinguished metabolically two spatial areas in 424 

the brain after CBVD; the penumbra zone and the core area. This study made a valuable 425 

contribution in terms of development of new strategies to treat patients with CVBD. 426 

 427 

2.3. Liquid chromatography - mass spectrometry 428 

 429 

The advantages of LC-MS in metabolomics are numerous, in terms of sample treatment, 430 

robustness and reproducibility, together with the amount and quality of the information 431 

that can be achieved. From a theoretical point of view, the versatility of the systems can 432 

be highlighted too, because different columns and mobile phases can be employed in 433 
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order to obtain the maximum coverage of the metabolites contained in one single 434 

sample.  435 

 436 

The objective of sample treatments for LC-MS based metabolomics is to obtain a 437 

solution containing as many metabolites as possible, free from large molecules (mainly 438 

proteins, but complex carbohydrates and nucleic acids must be also removed) dissolved 439 

in a solvent compatible with the mobile phase. As reviewed by Álvarez-Sánchez et al. 440 

in 2010 [79], this involves sampling and metabolite quenching, followed by metabolite 441 

extraction. The procedures for sample preparation are different according to the type of 442 

sample that is going to be analysed: tissues (organs) or bio-fluids (urine, plasma, serum, 443 

cerebrospinal fluid, etc.), free cells (culture) or tissue homogenates. For the specific 444 

field of diet-related diseases, it is worthy to mention that another bio-fluid - saliva opens 445 

new possibilities for metabolomics studies. 446 

 447 

Urine and plasma/serum have been extensively used for research with metabolomic 448 

tools, and more clinical applications of such approaches have been already proposed 449 

[20, 80]. Regarding urine, all the steps of sample pre-treatment (sampling time and 450 

collection, quenching, preservative addition, volume correction, pH adjustment, 451 

deproteinisation by centrifugation, normal filtration, ultrafiltration, ultrasound-assisted 452 

filtration and freeze-thawing) and sample-preparation steps (dilution, enzymatic 453 

hydrolysis, sample clean-up and preconcentration – by solid-phase extraction, liquid-454 

liquid extraction, evaporation, and lyophilisation) have been reviewed elsewhere, for all 455 

types of metabolomics analysis based on MS [81]. Sample treatment for blood-derived 456 

samples has also been recently reviewed [82], and according to the authors, the most 457 

common procedure for LC-MS analysis is based on protein precipitation with cold 458 

organic solvent such as methanol or acetonitrile of three-times their volume.  459 

 460 

Diet as an origin for disease is not easy to study in humans, and therefore animal models 461 

are often used. Insulin resistance was studied by Li et al. [83] in wild-type mice and 462 

mice lacking a gene involved in lipid metabolism, with diets differing in the fat content. 463 

This involved non-targeted fingerprinting with UHPLC-MS (linear trap quadrupole) and 464 

GC-MS on plasma, liver and adipose tissue. From this, metabolites not previously 465 

associated with insulin resistance were revealed, which could be important in 466 

understanding the pathophysiology of diabetes. In another study from Lin et al. [84], 467 



16 
 

rats were used to study these biochemical aspects but with another approach: a fructose-468 

high diet known to promote insulin resistance. The effects of the oral glucose tolerance 469 

test were studied by RP-HPLC-qTOF in plasma, liver, skeletal muscle and brain, and a 470 

biochemical network could be inferred. These results were confirmed in humans, by 471 

UPLC-qTOF analysis during oral glucose tolerance testing of 16 normal individuals 472 

where free fatty acids, acylcarnitines, bile acids, and lysophosphatidylcholines were the 473 

most discriminating biomarkers of the glucose bolus [85].The development of the 474 

atheroma plaque mediated by the diet has been studied by Jové et al. [86] in hamsters 475 

after consumption of an atherogenic diet through obtaining a global fingerprint, and a 476 

lipid fingerprint (lipidomics) by UHPLC-qTOF.  477 

 478 

With regard to the effect of diet on cancer, animal models have been applied to clinical 479 

studies, such as that published by Tan et al. [87]. In this study, hepatocellular carcinoma 480 

was induced in rat by diethylnitrosamine, a compound commonly found in food, and 481 

sera were fingerprinted by RP-UHPLC-qTOF. Three compounds appeared as strong 482 

classifiers of the groups, and a targeted analysis of these metabolites was applied to 483 

samples from 150 patients with different liver diseases and 262 patients with liver 484 

cancer. The association of these metabolites showed good sensitivity and specificity and 485 

were proposed as diagnostic biomarkers of the disease. 486 

 487 

The effect of diet (origin) has been studied not only in the disease, but also in the 488 

associated disorders, in order to gain a deeper insight into the metabolic alterations 489 

(mechanisms). Overweight/obese men showed differences in classical parameters 490 

(triglycerides, cholesterol, etc.) that were studied together with changes in the 491 

metabolite fingerprinting  performed by RP-UPLC-qTOF [88]. Three lysoPCs were 492 

identified as potential plasma markers and confirmed eight known metabolites for 493 

overweight/obesity men. Results confirmed abnormal metabolism of branched-chain 494 

amino acids and aromatic amino acids as well as fatty acid synthesis and oxidation in 495 

overweight/obese men. The same research group has investigated obesity in an animal 496 

model, whereby liver and serum metabolites of obese and lean mice fed on high fat or 497 

normal diets have been analysed using UPLC-qTOF and GC-MS [89]. It is worth noting 498 

that the results from the first study [88] were different to those highlighted in another 499 

study by Wang et al. [90], which involved RP-UPLC-qTOF fingerprinting of urine of a 500 

special subset of obese people (under 26 year-old). In the latter study, significant 501 
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metabolites were associated with changes in some metabolic intermediates and more 502 

notably variations in signalling compounds (including hormone metabolites). 503 

 504 

Most of the applications of metabolomics to study diet-related diseases have been 505 

addressed to study whether the pathology can be distinguished from the control-healthy 506 

situation, and papers have been published where the main goal was to achieve 507 

separation of samples by means of multivariate analysis techniques, with no 508 

identification of the metabolites responsible for the classification [91]. More recently, it 509 

is considered obligatory to propose biomarkers responsible for such differences that can 510 

be proposed as diagnostic biomarkers. Moreover, diagnostic markers can be considered 511 

also as possible predictive biomarkers for certain diseases, and propose ways to improve 512 

the therapeutics. Jiang et al. [92] found in a study with sera from 67 patients with 513 

cerebral infarction analysed by RP-UPLC/TOF that some molecules from 1-carbon 514 

metabolism such as S-adenosyl homocysteine and folic acid were differentially 515 

expressed, and that the prognostic for the evolution of the disease was associated to 516 

their levels. This opened the possibility of an intervention based on B-vitamins to 517 

manage such acute disease. 518 

 519 

In the case of DM, pathology is typically irreversible by the time the disease is 520 

diagnosed. A reliable test for predicting the risk could allow earlier implementation of 521 

intervention measures. Type 2 DM has been one of the most studied diseases by 522 

metabolomics, and in order to obtain the most comprehensive list of changes, the 523 

metabolic footprint of the variations in 482 metabolites in 40 patients and 60 matched 524 

controls have been studied by DMS, UHPLC-MS/MS, GC-MS and NMR [93]. In 525 

addition, the risk of developing DM was studied in the Framingham Offspring Study 526 

with baseline samples from 189 patients that afterwards had developed Type 2 DM, and 527 

189 matched controls with similar characteristics that had not [94]. This study was 528 

performed with HILIC/QqQ, and revealed a panel of amino acids that could be used to 529 

predict the risk for developing diabetes. Wang et al. used high-throughput 530 

metabolomics to uncover significant associations between the concentrations of five 531 

branched-chain (leucine, isoleucine and valine) and aromatic (phenylalanine and 532 

tyrosine) amino acids in blood and predisposition to diabetes.  533 

 534 
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One of the main issues to be taken into account about the quest of biomarkers by means 535 

of LC-MS is what is known in science as the Maslow´s hammer, popularly phrased as 536 

"if all you have is a hammer, everything looks like a nail" [95]: If RP-LC-MS is applied 537 

to biological samples, differences will be found in the metabolites that can be analysed 538 

with such a technique. If the sample for analysis is serum; probably a large number of 539 

lysophospholipids will be significant for the model. In this sense, changes in lysoPCs 540 

have been associated to different types of cancer such as pancreatic cancer [96], 541 

hepatocellular carcinoma [97], renal cell carcinoma [98], oesophageal squamous cell 542 

carcinoma [99], etc. 543 

 544 

HILIC chromatography has been applied to the study of paraffin-stored tumours, 545 

seeking to correlate general changes in metabolites in the different phenotypes of 546 

cancer, including five soft tissue sarcomas and five paired normal samples [94]. 547 

Researchers used LC-MS/MS with selected reaction monitoring (SRM) to study a total 548 

of 249 endogenous water soluble metabolites. Significant changes were detected in an 549 

average of 106 metabolites, most of which were related to changes in glucose 550 

metabolism, including glycolysis, glutamate metabolism, and the TCA cycle. Although 551 

the pre-treatment of samples with formalin leads to degradation, the findings are 552 

correlated to the published literature on metabolic alterations present in cancer [65]. 553 

HILIC  is very well suited for the analysis of urine [97] but it is more commonly used as 554 

a complementary, orthogonal technique to RPLC, usually as separated analyses, 555 

although the possibility of applying it as a second dimension in metabolomics studies 556 

has also been published [100]. HILIC has been widely applied in combination with 557 

RPLC to cancer [87, 97-99, 101].  558 

 559 

For finding diagnostic biomarkers of pre-diabetes, other orthogonal stationary phases 560 

such as pentafluorophenyl [102], or phenyl-hexyl and amino phases [103], coupled to 561 

triple quadrupole MS detectors have been employed in combination with reverse phase. 562 

Sabatine et al. [103] monitored 477 parent/daughter ion pairs through six SRM 563 

experiments for each sample. A metabolic ischemia risk score was created based on 564 

differences in some metabolites before and after exercise stress tested in 18 patients and 565 

18 controls. The score yielded a highly statistically significant relation to the probability 566 

of ischemia. This analytical approach was used by Shaham et al. to study insulin 567 

sensitivity [104]. 568 
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 569 

An interesting example from the cancer research field used RPLC-MS/MS and GC-MS 570 

to perform non targeted profiling on >1,100 individual metabolites in prostate tumour 571 

explants, blood, and urine from biopsy-positive cancer patients and biopsy-negative 572 

control subjects [70]. Statistically meaningful increments were found in a small subset 573 

of metabolites in tumour explants, particularly in metastatic tumours relative to benign 574 

prostate. Six metabolites were found to increase with progression from benign prostate 575 

to localised cancer to metastatic cancer, including sarcosine, a glycine metabolite. 576 

Importantly, the authors then developed a targeted stable isotope-dilution method for 577 

quantitative measurement of sarcosine and found it to be elevated by 10- to 20-fold in 578 

metastatic tumours compared with benign prostrate. They also showed that 579 

manipulation of enzymes of sarcosine metabolism influenced prostate cancer invasion. 580 

This combination, developed as “non-targeted profiling” has been applied to different 581 

diet-disease conditions, such as insulin resistance [83], cardiomyopathy [105], obesity 582 

[106], kidney cancer [107], and has been implemented to find new biomarkers even in 583 

tumours that have been stored in paraffin for a long time [108]. 584 

 585 

In the LC-MS based metabolomics of silent myocardial ischemia (SMI), a form of 586 

coronary heart disease, Lin et al. [109] studied a group of 39 human adults and 25 587 

controls by UPLC-qTOF. This identified plasma concentration differences of four kinds 588 

of phospholipids closely related with the occurrence of SMI, among which 1-linoleoyl 589 

glycerophosphocholine (C18:2) was statistically decreased in SMI population. 590 

Furthermore, the plasma phospholipid changes were previous to enzymatic alteration in 591 

SMI, which might be a useful complementary reference to facilitate SMI diagnosis.  592 

 593 

Metabolomics with MS has been used to assess whether metabolites discriminate 594 

coronary artery disease (CAD) and predict risk of cardiovascular events [110]. To 595 

evaluate discriminative capabilities of metabolites for CAD, two groups were profiled: 596 

174 CAD cases and 174 sex/race-matched controls (“initial”), and 140 CAD cases and 597 

140 controls (“replication”). To evaluate the capability of metabolites to predict 598 

cardiovascular events, cases were combined (“event” group); of these, 74 experienced 599 

death/myocardial infarction during follow-up. A third independent group was profiled 600 

(“event-replication” group; 63 cases with cardiovascular events, 66 controls). Two 601 

PCA-derived factors were associated with CAD: 1 comprising branched-chain amino 602 



20 
 

acid metabolites and one comprising urea cycle metabolites. A factor composed of 603 

dicarboxylacylcarnitines predicted death/myocardial infarction and was associated with 604 

cardiovascular events in the event-replication group. In a related study, LC-MS/MS on 605 

2023 patients at risk of CAD revealed 45 acylcarnitines, 15 amino acids and other lipid-606 

related metabolites can be used to predict further events [111]. 607 

 608 

Finally, Tulipani et al. [112] studied by RP-HPLC-qTOF the urine of 42 volunteers with 609 

metabolic syndrome before and after an intervention in the diet, adding 30 g of nuts 610 

daily. They found markers of the intake of the nuts (microbial and phase II metabolites 611 

of polyphenols) together with other markers of energy balance metabolism (serotonin 612 

metabolites). 613 

 614 

2.4. Direct mass spectrometry 615 

 616 

Although direct mass spectrometry can be less informative, advancements in 617 

instrumentation have improved the resolution, accuracy and its relevance for tandem 618 

mass spectrometry [113]. For example, Fourier transform ion cyclotron resonance mass 619 

spectrometry (FTICR-MS) can have a mass resolution exceeding 1,000,000 and mass 620 

accuracy sub 1ppm [113]. An alternative advanced instrument for direct mass 621 

spectrometry is the Orbitrap mass spectrometer that is more commonly used in LC-MS. 622 

This is also associated with high mass resolution (over 100,000) and mass accuracy in 623 

the range 2-5ppm [114]. As a consequence of these specifications, instruments are also 624 

costly both for the initial outlay as well as for each analysis and therefore routine use is 625 

often not an option. This can make these instruments inaccessible to many researchers, 626 

especially in a clinical setting. Nevertheless, examples in the literature represent them as 627 

alternative methods to the more commonly used techniques in different applications. 628 

 629 

The use of FTICR-MS has been reported in the discovery of biomarkers that pose the 630 

risk of lifestyle and diet on the susceptibility of colorectal cancer [115].  Ultra-long-631 

chain fatty acids: m/z 446, m/z 448 and m/z 450 were observed to be significantly 632 

reduced in the serum of colorectal cancer patients relative to healthy controls, as 633 

determined by FTICR-MS followed by structural characterisation of biomarkers using 634 

tandem LC-MS/MS and NMR [115]. This provided new, specific evidence for lipid 635 

profiles in colorectal cancer since it was previously suggested that fibre rich diets 636 
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prevent colon cancer while high dietary fat promotes it [116]. It is thought that the 637 

initiation or promotion of neoplastic growth could be prevented through diet control. In 638 

this way chemoprevention could be possible through revealing dietary agents or 639 

strategies and that different diets can be associated with increasing or decreasing the 640 

risk of cancer.  641 

 642 

FTICR-MS has also been reported in a direct mass spectrometry approach to assess the 643 

hepatic effects of polychlorinated biphenyls in mice. These pollutants were previously 644 

associated with abnormal liver enzymes and suspected to contribute to a range of diet-645 

related diseases including obesity, metabolic syndrome and non-alcoholic fatty liver 646 

disease [117]. Mice were fed control or high fat diets with or without exposure to 647 

polychlorinated biphenyl 153 and metabolite extracts were obtained from the livers after 648 

12 weeks of exposure. The analysis involved a linear ion trap FTICR mass spectrometer 649 

coupled with direct infusion nano-electrospray ionisation. The results indicated 18 650 

metabolites that that were decreased and 6 metabolites that were increased with the high 651 

fat diet combined with polychlorinated biphenyl 153 exposure compared to the control 652 

diets (with and without polychlorinated biphenyl 153). Moreover, when comparing high 653 

fat diets, the addition of polychlorinated biphenyl 153 caused a rise in erythronic acid 654 

while decreasing the levels of glutathione and creatine [117]. This and the fact that no 655 

significant effect of polychlorinated biphenyl 153 was observed for control diets 656 

indicated that the metabolic effect of polychlorinated biphenyls on the liver are highly 657 

dependent on the level of fat in the diet [117].  658 

 659 

Metabolic syndrome can be associated with obesity and insulin resistance which are the 660 

major risk factors for many diet-related diseases including hypertension. In a study to 661 

determine whether the effect of hypertension on the lipidome is independent to the 662 

effects of obesity and insulin resistance, the plasma lipidomes of 19 men with 663 

hypertension compared to 51 controls were assessed using direct mass spectrometry 664 

involving an LTQ Orbitrap hybrid mass spectrometer [118]. From this, obesity was 665 

observed to increase lipid load in blood plasma in all subjects, involving a specific and 666 

dramatic increase in tri- and diacylglycerols while insulin resistance had little effect on 667 

the lipidome. In response to hypertension, ether lipids were decreased, specifically ether 668 

phosphatidylcholines and ether phosphatidylethanolamines, as well as free cholesterol 669 

[118]. Since these alterations in subjects with hypertension were independent of those 670 
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induced by obesity or insulin resistance, it was suggested that preventative dietary 671 

strategies may alleviate the severity of hypertension.    672 

 673 

In another application of the LTQ Orbitrap in metabolomics of diet-related diseases, the 674 

modified phospholipid products of low density lipoprotein oxidation associated with 675 

atherosclerosis and cardiovascular disease has been assessed. Lipoprotein-associated 676 

phospholipase A2 acts on phospholipid oxidation products to generate pro-677 

inflammatory lysophospholipids and oxidised non-esterified fatty acids. Furthermore, 678 

free lipoprotein-associated phospholipase A2 can act as a predictor of cardiovascular 679 

disease and inhibitors of this compound could be used in therapy of atherosclerosis 680 

[119]. A metabolomics approach to study the effects of in vitro oxidation in the 681 

presence and absence of one of these inhibitors on the phosphatidylcholine composition 682 

of human low density lipoprotein has been performed. From direct mass spectrometry 683 

analysis using an LTQ Orbitrap, three main classes of phosphatidylcholine were 684 

revealed including truncated forms represented by peaks in the range m/z 594-666, non-685 

truncated oxidised forms in the range m/z 746-830 and the major products of 686 

lipoprotein-associated phospholipase A2: saturated and mono-unsaturated lyso- 687 

phosphatidylcholine [119]. From this it was concluded that phosphatidylcholines can be 688 

markers of atherosclerotic disease progression as well as markers of the response of 689 

lipoprotein-associated phospholipase A2 inhibitor therapy. 690 

 691 

Cholesterol esters are linked to a range of diet-related diseases. Direct infusion 692 

electrospray ionisation mass spectrometry was involved in the targeted and quantitative 693 

analysis of cholesterol esters in plasma to determine their correlation with diet [120].  694 

When assessed in the plasma lipid extracts of mice fed a western diet, it was revealed 695 

that cholesterol esters containing mono-unsaturated fatty acids were elevated compared 696 

to normal chow diets [120].  697 

 698 

An alternative approach in direct mass spectrometry is imaging mass spectrometry. This 699 

is not usually high-throughput and therefore not always applicable in metabolomics, but 700 

offers the distinct advantage that metabolites or lipids can be spatially localised within a 701 

sample. In this way, imaging mass spectrometry is a novel method for the analysis of 702 

biological samples in situ, combining mass spectrometry with microscopic imaging. 703 

The chemical organisation of a sample is likely to be correlated with its physical 704 
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features and therefore spatially localising and co-localising groups of chemicals 705 

elucidates properties of structure and potentially reveals information about their 706 

function in a biological system. Imaging mass spectrometry is currently of paramount 707 

importance and receiving significant attention in the mass spectrometric community 708 

[121]. Since these techniques are based on surface analysis, samples are most 709 

commonly tissue sections with an approximate thickness in the µm range and more 710 

recently imaging mass spectrometry of single cells has been reported [122, 123]. Two 711 

techniques utilised in metabolomics based studies of biological samples are time of 712 

flight-secondary ion mass spectrometry (ToF-SIMS) and desorption electrospray 713 

ionisation mass spectrometry (DESI-MS) due to their capability of analysing low 714 

weight compounds in the metabolite and lipid range.  715 

 716 

Current ToF-SIMS instruments available for imaging benefit from remarkable spatial 717 

resolution (sub 1 µm) without compromising mass resolution [124-126]. The way in 718 

which samples should be prepared to optimise results has been explored [127, 128]. As 719 

a technique, it is ideal for analysing at low mass, often but not restricted to masses 720 

<1000 Da, making it an ideal choice for metabolite studies. ToF-SIMS has had reported 721 

success in imaging both cells [129] and tissues [130] and although there have been few 722 

examples to date of studies focussing specifically on metabolites rather than lipids [131, 723 

132], its potential for metabolite identification has been explored [133]. It has already 724 

been applied to lipid analysis but could also be a contender for metabolomics with 725 

respect to diet-related diseases in the future.   726 

 727 

Alcoholic/non-alcoholic fatty liver disease caused by steatosis, the abnormal retention 728 

and accumulation of lipids in liver cells, is strongly influenced by diet and lifestyle. The 729 

distribution of lipids has been assessed in situ utilising ToF-SIMS, revealing the 730 

location of accumulated tri- and diacylglycerols as well as monoacylglycerols in 731 

steatosis regions of fatty livers compared to control livers [134]. Imaging of vitamin E 732 

confirmed previous knowledge that this group of metabolites (tocopherols and 733 

tocotrienols) is reduced with steatosis but further revealed a periportal predominance in 734 

control liver [134]. 735 

 736 

Diabetes can often be associated with atherosclerosis and characterising the metabolome 737 

(or lipidome) of atheroma plaques could help determine its contribution to 738 
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inflammation. ToF-SIMS imaging has revealed that a significant increase in non-739 

esterfied fatty acids occurs in diabetic atheroma plaques compared to non-diabetic 740 

subjects and that they are co-localised with areas of inflammation within the plaques 741 

[135]. Specifically, linoleic acid, palmitic acid and oleic acid were found to significantly 742 

differ in the plaques as a consequence of diabetes, however using this technique, other 743 

lipids including cholesterol and triglycerides that are known to be associated with 744 

atherosclerotic pathogenesis were not significantly different as a consequence of 745 

diabetes [135]. This may suggest that non-esterified fatty acids are specifically 746 

associated to inflammation within the plaques that occurs with diabetes. 747 

Desorption electrospray ionisation (DESI) is an alternative imaging mass spectrometry 748 

technique that can be employed for in situ analysis of biological samples. DESI was the 749 

first reported mass spectrometry technique to utilise ionisation under ambient conditions 750 

[136]. Other techniques involve post ionisation in ambient conditions, including laser 751 

desorption methods such as laser ablation electrospray ionisation (LAESI) [137] and 752 

thermal desorption methods such as direct analysis in real time (DART) [138], however 753 

these techniques are not associated with imaging. DESI can therefore be considered one 754 

of the most advantageous techniques for sample preservation since metabolites are 755 

analysed in situ and without requiring vacuum. Methods in imaging mass spectrometry 756 

for biological analysis have been reviewed previously, where the advantages and 757 

limitations of different techniques are discussed [139, 140].  758 

 759 

One key example of the application of DESI to study diet-related diseases has been in 760 

the imaging analysis of colorectal adenocarcinoma tissue. In this study, a DESI ion 761 

source was employed in addition to an Orbitrap mass spectrometer for data acquisition 762 

in negative ion mode in the range m/z 600-1000 with a spatial resolution of 100 µm, 763 

mass resolution of 30,000 and mass accuracy of 4 ppm [141]. The aim of the study was 764 

to reveal differences in lipid profiles caused by cancer and to generally compare its 765 

application to current histological methods in imaging to assess its usefulness in tissue 766 

analysis of disease states. It was concluded that the technique can be applied for single 767 

biomarker discovery in individual cases, however this approach may not be 768 

reproducible enough for global analysis [141]. When combining the technique with 769 

multivariate analysis however, it was elucidated that global tissue identification can be 770 

possible and furthermore, the specificity exceeds the limitations of traditional 771 

microscopic techniques. The lipid profiles of colorectal carcinoma tissue could be 772 
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clearly distinguished from smooth muscle tissue and healthy intestine mucosa also 773 

imaged. 774 

 775 

As presented, direct mass spectrometry offers some advantage over mass spectrometry 776 

coupled with a pre-separation technique (such as the high resolution and accuracy of 777 

instrumentation that can be employed and more over the capability for imaging that is 778 

not possible using pre-separation techniques). However, a major limitation is that they 779 

can often be susceptible to ion suppression or enhancement that means the matrix effect 780 

in complex metabolomics samples can affect the quality of the experiment. In addition, 781 

the matrix effect can complicate data interpretation and unique metabolite ions can often 782 

not be distinguished from adduct and product ions from other metabolites [113]. For 783 

this reason, its application is most useful when the complexity of samples is not a 784 

limitation or the necessity for high-throughput analysis (in the case of non-imaging 785 

direct mass spectrometry) or imaging (in the case of imaging mass spectrometry) 786 

outweighs these issues. 787 

 788 

3. Systems biology in the study of diet-related diseases 789 

 790 

Systems biology draws upon knowledge and techniques from various disciplines across 791 

the physical, information and life sciences with an aim to fill gaps in biological 792 

knowledge. It is an approach commonly used to study the biochemical interactions of 793 

genes, proteins and/or metabolites as emergent properties of a biological system, rather 794 

than as isolated biological features. Many systems biology experiments are driven by a 795 

hypothesis or biological question that has not been resolved using traditional 796 

techniques. The experiment is carefully designed and samples collected for analysis 797 

using often high-throughput technologies capable of generating reproducible, qualitative 798 

or (semi-) quantitative data that can be analysed using intelligent computational 799 

methods including multivariate analysis and modelling. Data and data models are 800 

usually reported in an accepted systems biology language that if made publically 801 

available in databases can be compatible with other data across the world. Subsequently 802 

a collection of genomic, transcriptomic, proteomic and metabolomics data is generated 803 

for a range of biological systems and used to reveal structural and functional properties 804 

that can lead to further hypotheses. Recent advancements in technology especially in the 805 

physical and information sciences have enhanced the quality of experimental data and 806 
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its analysis. Furthermore, the increased use of standardised languages and databases for 807 

data sharing enables combining of data on one biological system.  808 

 809 

Incorporating high-throughput data from genomics, transcriptomics, proteomics and/or 810 

metabolomics can be useful for global analysis of diseases. Moreover, it can highlight 811 

the effect of external factors such as diet on each level of function and how this changes 812 

interaction between hierarchical levels. For example, in a study combining 813 

metabolomics data with gene expression data it has been suggested that dietary energy 814 

restriction in pre-menopausal women can reduce the risk of breast cancer in post-815 

menopause [142]. The study aimed to reveal the effect and effectiveness of dietary 816 

energy restriction (approximately 60 % lower than in a normal diet) on reducing 817 

mammary tumourigenesis. From the combined microarray RNA and GC-MS 818 

metabolomics data collected, it was found that the most down-regulated metabolic 819 

processes in the breast after dietary energy restriction were related to fat synthesis and 820 

glycolysis. Furthermore, biomarkers of breast cancer risk including leptin, cholesterol 821 

and triglycerides were reduced with dietary energy restriction. [142]. The lipidome has 822 

been described previously as a composite biomarker for breast cancer. For example, a 823 

combined elevation in mono-unsaturates and lowering of the ratio between n-6 and n-3 824 

fatty acids has been associated with reducing the risk of breast cancer [143]. In this way, 825 

the lipidome could be considered a modifiable feature to control breast cancer risk. 826 

In another study combining metabolomics with genomics data, metabolite biomarkers 827 

have been proposed to identify pre-diabetes. Three metabolite biomarkers were 828 

identified by for impaired glucose tolerance: acetylcarnitine C2, lyso-PC (18:2) and 829 

glycine [144]. The underlying mechanisms for their control was investigated by 830 

studying their associations with type II diabetes related genes through analysing protein-831 

metabolite interaction networks, revealing seven genes related to these metabolites. The 832 

gene expression analysis elucidated the transcriptional activity of four enzymes related 833 

to these metabolites [144]. This relationship between metabolites and enzymes 834 

determined experimentally suggested the association of these metabolites with the genes 835 

identified through network analysis.  836 

 837 

In a related study, serum metabolites found to be strongly associated with free fat mass 838 

index in humans included amino acids, acylcarnitines, phosphatidylcholines (PCs), 839 

sphingomyelins and hexose [145]. This was observed in a study of free fat mass and 840 
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muscle mass changes in the human body related to diet and lifestyle. Assuming additive 841 

genetic effects, linear models were used to analyse the relationships between the serum 842 

metabolite concentration/ratios and single nucleotide polymorphisms known to be 843 

associated with diet and lifestyle. Since the observed changes were related to obesity, it 844 

was advocated that accumulation of fat from diet and lifestyle may have a detrimental 845 

effect on skeletal muscle metabolism including a limited induction of fatty acid 846 

oxidation [145]. 847 

 848 

In an analysis of transcriptome and metabolome profiles to assess the alterations in fatty 849 

liver induced by high-fat diets in rats, it was observed that 130 genes are regulated by 850 

high fat diets and this causes a marked downstream increase in serum cholesterol, 851 

triglycerides, glucose and insulin [146]. Metabolomics results were obtained from rat 852 

serum analysed by GC-MS, gene expression analysis was performed on rat livers using 853 

DNA microarrays and transcriptomics results were obtained using real-time reverse 854 

transcriptase polymerase chain reaction, where samples were collected 16 weeks after 855 

continuous diet exposure (high fat or control chow diet). Specific gene expressions were 856 

observed through the transcriptomics approach revealing that lipid metabolism 857 

regulators such as sterol regulatory element binding factor 1 and stearoyl-coenzyme A 858 

desaturase 1 were up-regulated, whereas the expression of peroxisome proliferator-859 

activated receptor, carnitine palmitoyltransferase 1, and 3-hydroxy-3 methylglutaryl-co-860 

enzyme A reductase were repressed in high fat livers. From a global analysis of all 861 

metabolomics and transcriptomics data together, the integrated systems analysis led to 862 

conclusions that long-term exposure to high fat diets can result in multi-dimensional 863 

alterations in fatty acid metabolism and lipogenesis as well as inflammatory and stress 864 

response related metabolic pathways [146]. 865 

 866 

In an alternative combination of ‘omics’ data, novel markers of body fat mass changes 867 

associated with obesity have been revealed from the combined analysis of 868 

metabolomics and proteomics data [147]. This involved studying the difference between 869 

lean and obese individuals where 39 unique proteins were identified and 12 metabolites 870 

were significantly related obesity. Integrating proteome and metabolome data in a 871 

bioinformatics evaluation, group separation was improved [147], highlighting the 872 

appropriateness of the systems biology approach employed. 873 

 874 
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Computational modelling is a widely used and highly applicable technique to 875 

understand disease mechanisms through a systems biology approach. Models can 876 

integrate metabolomics data or be used to predict metabolomics data, most commonly 877 

through studying (genome scale) metabolic networks. A mathematical model of 878 

ordinary differential equations has been developed for pancreatic β-cell glucose 879 

transport using metabolic data describing the alterations that occur as a result of type II 880 

diabetes [148]. Sensitivity analysis was performed to assess the effect of model 881 

perturbations on different pathway components. Findings indicated that a physiological 882 

and metabolic threshold exists whereby glucose entry, and not glucose kinase activity, 883 

is the rate limiting step in glucose-6-phosphate production [148]. It was shown that β -884 

cell glucose transport is below this threshold in diabetes but well above it in healthy 885 

subjects. Furthermore, preservation of a glycan linkage by a corresponding 886 

glycosyltransferase may be the most effective way to maintain glucose transporter 887 

expression in β -cell glucose and to retain normal glucose transport [148]. This feature 888 

determined computationally was consistent with experimentally determined gene 889 

expression of glucose transporters in the literature. 890 

 891 

The use of models for data interpretation and combination of data from different 892 

hierarchical levels is a key feature of systems biology. It may eventually be possible to 893 

build a parameterised computational model of any biological system that has the 894 

potential to illustrate function possible. By elucidating a greater understanding of 895 

diseases through testable and quantifiable models, it is hoped that new targets for 896 

therapy will be revealed. Building a good model for a disease may be key to recognising 897 

dynamic features, which may be useful to identify parts of the system that can be 898 

perturbed to disrupt disease progression, while also moving towards improved 899 

diagnostics [149]. The approach to model a silicon cell is a key theme in systems 900 

biology research that, ‘aims to describe the intracellular network of interest precisely, by 901 

numerically integrating the precise rate equations that characterise the ways 902 

macromolecules interact with each other’ [150]. 903 

 904 

4. Conclusion 905 

 906 

There are a range of analytical techniques in mass spectrometry that have shown useful 907 

in the characterisation of a wide variety of diet-related diseases, and some clues have 908 
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been provided for their selection, although for a good coverage combination of several 909 

techniques is usually necessary. However, further validation of the results using larger 910 

and independent new datasets is one of the pending aspects of most metabolomics 911 

studies. Currently, analytical capabilities are impressive; however, data treatment and 912 

interpretation are the real bottleneck of this type of studies.  913 

 914 

Systems biology is a useful approach, particularly for combining metabolomics with 915 

data obtained through other ‘omics’ experiments to reveal more information about 916 

pathway regulation and mechanisms of diseases. Furthermore, the bioinformatics 917 

element of systems biology allows a metabolomics researcher to use metabolomics data 918 

to generate computational models that can be used as predictive tools for further omic 919 

analysis. One final feature of systems biology that has been particularly useful in the 920 

metabolomics of diet-related diseases is the availability of databases that are accessible 921 

to researchers employing a wide range of techniques. This is particularly advanced for 922 

GC-MS which is beneficial since this is often used for studies based on energy 923 

metabolism which is a key feature of diet-related diseases.  924 
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 932 

FIGURE CAPTIONS 933 

Figure 1: The goals of metabolomics for diet-related disease research. Metabolic 934 

fingerprinting is commonly employed for biomarker discovery that can be useful for 935 

diagnosis, prognosis, monitoring and staging of the disease as well as to understand its 936 

cause and mechanism. The transition from health to disease can be predisposed by diet 937 

and the reverse can be positively influenced by diet. The main diet-related diseases are 938 

shown along with the associated symptoms.  939 

Figure 2: Best features of different MS platforms to study diet-related diseases. 940 

Choosing the correct instrument for the application can be based on the classes of 941 

compounds best analysed by each respective technique (shown below each technique) 942 

or by the analytical aspect that sets each instrument apart from the rest (shown above 943 

each technique).  944 

 945 
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 947 

 948 

949 
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