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Abstract The assessment of data analysis methods in 1H

NMR based metabolic profiling is hampered owing to a

lack of knowledge of the exact sample composition. In this

study, an artificial complex mixture design comprising two

artificially defined groups designated normal and disease,

each containing 30 samples, was implemented using 21

metabolites at concentrations typically found in human

urine and having a realistic distribution of inter-metabolite

correlations. These artificial mixtures were profiled by 1H

NMR spectroscopy and used to assess data analytical

methods in the task of differentiating the two conditions.

When metabolites were individually quantified, volcano

plots provided an excellent method to track the effect size

and significance of the change between conditions. Inter-

estingly, the Welch t test detected a similar set of metab-

olites changing between classes in both quantified and

spectral data, suggesting that differential analysis of 1H

NMR spectra using a false discovery rate correction, taking

into account fold changes, is a reliable approach to detect

differential metabolites in complex mixture studies. Vari-

ous multivariate regression methods based on partial least

squares (PLS) were applied in discriminant analysis mode.

The most reliable methods in quantified and spectral 1H

NMR data were PLS and RPLS linear and logistic

regression respectively. A jackknife based strategy for

variable selection was assessed on both quantified and

spectral data and results indicate that it may be possible to

improve on the conventional Orthogonal-PLS methodology

in terms of accuracy and sensitivity. A key improvement of

our approach consists of objective criteria to select sig-

nificant signals associated with a condition that provides a

confidence level on the discoveries made, which can be

implemented in metabolic profiling studies.

Keywords Artificial mixtures � Data analysis � t test �
PLS � NMR

1 Introduction

Metabolic profiling is underpinned by analytical techniques

such as nuclear magnetic resonance spectroscopy (NMR)

and mass spectrometry (MS). Spectral data are complex,

typically consisting of many thousand variables providing

information on hundreds of metabolites. The numerical

complexity of the measurements hinders the direct quan-

tification of significant change by visual inspection alone.

Therefore, research on statistical methods for the analysis

of metabolic profiles is essential to reliably identify met-

abolic biomarkers.

Discriminant analysis models and statistical hypothesis

testing have been applied to robustly identify biomarkers

that change significantly between conditions (Allen et al.
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2003; Bundy et al. 2009; Fiehn et al. 2000; Holmes et al.

2008). Among these methods partial least squares dis-

criminant analysis (PLS-DA) and orthogonal PLS dis-

criminant analysis (O-PLS-DA) are particularly common.

O-PLS-DA is a latent variable regression model that has

been applied to metabolic data to build predictive models

identifying variables associated with particular biological

conditions (Lindon et al. 2007; Trygg and Wold 2002).

Discriminant algorithms which filter out variation unre-

lated to the biological class have proved useful, particularly

for data sets in which the effect of interest may be quite

subtle compared to the high degree of compositional var-

iation often observed, for example, in human nutritional

studies (Lindon et al. 2007). Although these methods have

been extensively applied, their assessment using NMR

spectra with known composition and concentration levels

has been less explored and since the precise biochemical

composition is unknown, many assumptions are made as to

the behaviour of the mathematical procedures. In order to

elucidate the accuracy of the statistical methods applied

with respect to the analytical platform, the composition of

the samples must be known a priori.

Several approaches can be used to assess statistical

methodology, including simulated spectra, artificial mixtures

and spike-in samples. Simulated spectra have been applied

to analyse the impact of peak position and variable stan-

dardization on the analysis of metabolic profiles (Cloarec

et al. 2005b; Craig et al. 2006; Dumas et al. 2006; Keun

et al. 2002). However, it is hard to simulate spectra with all

the chemical and statistical characteristics of real analytical

data (such as peak overlap and positional variation),

although relatively sophisticated software packages have

recently become available for this purpose (Muncey et al.

2010). Spiking in known compounds to a biological matrix

of known provenance offers an excellent approach com-

bining both biological complexity and realistic spectral

properties, while retaining knowledge about the true levels

of the spiked in analytes. However, the main disadvantage of

retaining the background matrix is that many compounds are

already present in the sample, increasing the difficulty of

compound quantification through peak overlap and the

unknown levels of endogenous metabolites in the matrix.

Use of stable isotope labelled standard compounds is a

possible way to circumvent this problem, though acquiring

them is often difficult and expensive. Artificial complex

mixtures with known composition is an alternative strategy,

intermediate between the former two approaches.

Previous work analysing the reproducibility of 1H NMR

data acquisition under different conditions and protocols

(Dumas et al. 2006; Keun et al. 2002) has been based on 1H

NMR spectra of split biofluid samples of identical com-

position. Other studies have used simulated spectra to

analyse the effect of spectral normalization and variable

scaling (Craig et al. 2006) and the impact of matrix effects

on O-PLS (Cloarec et al. 2005b). More recently, the pre-

dictive power of 1H NMR spectral correlations for peak

assignment were analysed using a set of known compounds

in real biofluid spectra (Couto Alves et al. 2009). However,

the performance of data analysis methods used in the

process of biomarker discovery using artificial complex

mixtures to better identify the qualitative and quantitative

behaviour of metabolites analysed via various statistical

algorithms, has not received much attention.

In this paper, an experimental design comprising artificial

mixtures was developed for the purpose of comparing data

analysis methods (see schematic diagram in supplementary

information Fig. S1). The designed mixture incorporated

endogenous and exogenous metabolites as well as xenobi-

otics commonly found in urine samples from human popu-

lations. Note that we do not attempt to emulate the true

complexity of real biofluids, but rather to construct a sample

set whose statistical characteristics are representative of

multicomponent mixtures for the purpose of comparing data

analysis methods. The metabolite concentration means and

standard deviations were based on reference values for

human urine derived from the Human Metabolome Database

(HMDB) (Wishart et al. 2007). The dataset consisted of two

classes of samples, assigned as ‘control’ and ‘disease’, with

biologically realistic inter-metabolite correlations as well as

differences in both concentrations and correlations between

classes. This approach allowed us to construct a difficult

separation problem with which to challenge the data analysis

methods. By design, only a few metabolites in the sample

had statistically significant differences between group

means, analogous to real world clinical situations where

disease signatures are often subtle and obscured by the high

degree of compositional variability. Several metabolites

without detectable 1H NMR resonances were also included

to simulate possible effects of a complex unobservable

chemical background present in real mixtures. The acquired

data were employed to evaluate the effectiveness of various

data analysis methods. We cover both uni- and multivariate

statistical methods, applied to both spectral and quantified

metabolite data. Our comparison addresses the relative

merits methods for the two different aspects of class dis-

crimination and biomarker selection.

2 Methods

2.1 Concentrations of urinary metabolites in a normal

human population

A sample of 21 metabolites representing endogenous

metabolites and xenobiotics often observed in human urine

were carefully chosen covering a wide range of metabolic
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processes (see Table 1). The choice of metabolites was also

guided by a desire to examine the relative impact of different

analytical platforms on the recovery of metabolic information

and associated data analysis techniques. Inter-platform

comparisons will be discussed elsewhere; here we focus on

the 1H NMR data alone. Typical concentrations in human

urine were obtained from the HMDB (Wishart et al. 2007)

and the published literature (Saude et al. 2007). Mean con-

centrations for metabolites without reported mean levels were

generated randomly from the distribution of those com-

pounds whose mean concentrations were known. The

concentration standard deviation for metabolites missing this

information was predicted using a linear model fit to log

transformed values for metabolites with known mean and

standard deviation. In five cases, only concentration ranges,

but not standard deviations were reported. For these metab-

olites, range values were converted to standard deviations by

assuming that the range corresponded to a 95 % confidence

interval around the mean concentrations using the expression:

r ¼ ðxmax�xminÞ=2

z95%
where is the 95 % percentile of the standard

Normal distribution.

2.2 Experimental design

Two groups were constructed, ‘normal’ and ‘disease’, each

comprising 30 samples. The metabolite concentrations for

each sample were randomly generated and the groups

differed in both their mean concentrations and correlations.

(See Tables S5–S8 for details). The correlation matrices

of normal and disease datasets were similar but seven

metabolites had their correlations with other metabolites

erased in the disease group by setting the population cor-

relation to zero. In the absence of data from a representa-

tive human population, the correlations were generated

following the distribution observed from in-house data of

Table 1 Metabolite concentration data for a human population and theoretical values for the synthetic dataset�

Metabolite Human population Synthetic dataset Class differences

(concentration lM/mM

creatinine)

(Concentration lM)

mean

std Concentration Correlation

random (disease)

Mean std Normal Disease Both t test

p value

Hippurate 191.600 62.015 1730.148 1698.701 559.998 0.8506 No

Phenylacetylglycine (PAG)b 0.06 0.01 0.57 0.5 0.009 0.0004 Yes

Pipecolic acidc 0.030 0.026 0.307 0.424 0.120 0.0135 No

Indoxyl sulphate 14.000 2.857 126.420 117.390 25.800 0.1424 No

Trimethylamine-N-oxide (TMAO) 70.750 31.224 638.873 643.839 270.900 0.0610 Yes

Trimethylamine (TMA)c 7.700 7.550 68.628 77.658 28.896 0.0441 No

4-cresyl glucuronidea 0.601 0.134 5.425 5.986 1.209 0.1953 No

Paracetamola 88.711 16.193 801.060 801.060 0 1.0000 No

Valine 2.650 0.561 24.020 25.764 5.068 0.8723 Yes

Alanine 33.900 6.505 306.117 320.219 58.741 0.1804 Yes

Creatininea 9.030a 4.370a 9030.000 9030.000 0 1.0000 No

D-3-hydroxybutyrate (BHB) 35.600 5.765 330.498 321.468 52.061 0.3128 No

Citrate 226.700 51.684 2047.101 2047.101 466.704 0.6369 No

Succinate 12.150 2.526 109.715 114.682 22.805 0.4729 Yes

Guanidinoacetate (GAA)c 89.000 28.827 803.670 704.014 260.304 0.9407 No

Uric acidc 188.000 55.383 1697.640 2096.368 500.105 0.0163 No

Xanthinec 2.600 0.395 23.478 25.798 3.571 0.0000 Yes

N-methylnicotinamideb 11.243 2.229 101.524 111.656 20.128 0.7226 No

Isocitrate 38.900 7.339 351.267 283.596 66.268 0.0009 Yes

Ureidopropionate 2.23 0.365 20.047 21.672 3.296 0.0015 No

Tyrosine 10.900 1.913 98.427 102.791 17.277 0.9907 No

a Creatinine population metabolite levels are expressed in mM. The metabolites marked with ‘b’ were randomly generated from a probability

distribution fitted to the distribution of known mean concentration levels. The population standard deviation of the metabolites marked with ‘c’

was estimated from range values. Paracetamol and creatinine concentration is constant across all samples. The citrate mean concentration is

identical for both classes. For all metabolites, the standard deviation (std) is equal for both classes. ‘Correlation random’ denotes the variables

having population correlation set to zero in the disease group
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normal rat urine. Table 1 gives the means and standard

deviations for each metabolite and provides the p value of

the between-class t test as well as indicating the metabo-

lites whose inter-metabolite correlations were erased.

In order to reduce the number of stock solutions as well

as the experimental and sample preparation errors, the

metabolite concentrations were quantized in ten levels with

quanta optimized using the Lloyd-Max algorithm (Lloyd

2003) to minimize the mean square distortion of the

quantized distribution. Of the 21 metabolites in Table 1,

only 17 were expected to be observed in the NMR analysis

owing either to the deliberately low concentrations (PAG,

pipecolic acid and 4-cresyl glucuronide) or specific NMR-

structural properties in the case of uric acid, which does not

possess resolvable protons. The unobserved four com-

pounds were retained in the design to assess the perfor-

mance of other analytical platforms (not described in this

paper) and to assess impact of background noise.

2.3 Artificial mixture sample preparation

All chemicals were purchased from Sigma-Aldrich (Poole,

UK). The 21 individual compounds were carefully weighed

and dissolved separately in 500 ml of water to form 21

‘mother stock’ solutions. Each mother stock was then

diluted to obtain 10 stock solutions corresponding to the 10

quantized levels mentioned above. For each artificial

mixture, 2 ml of the appropriate metabolite stock solution

was added according to the mixture design, giving a final

volume for each sample of 42 ml. A 400 ll aliquot of each

sample was added to 200 ll of 0.2 M sodium phosphate

buffer (D2O:H2O = 9:1, v:v, including 0.01 % of sodium

3-(trimethylsilyl) propionate-2,2,3,3-d4 [TSP] as a chemi-

cal shift reference, and 3 mM sodium azide preservative,

pH = 7.4) and frozen at -80 �C prior to NMR analysis.

Since the aim was to simulate metabolic behaviour in real

biofluids, the pH of the sample mixtures was not adjusted.

2.4 NMR spectroscopy and preprocessing

1H NMR spectra were acquired in a randomized order at

600.13 MHz with suppression of the water resonance using

a standard pre-saturation pulse sequence 1D NOESY

(90�-3 ls-90�-100 ms-90�-acquire). An exponential line-

broadening filter (0.3 Hz) was applied prior to Fourier

transformation and spectra were phased, baseline corrected

and referenced automatically using an in-house MATLAB

routine (version 7.4, The MathWorks, Natick, Massachu-

setts). MATLAB was used for all subsequent procedures.

Unless otherwise stated, all spectra were normalized using

probabilistic quotient normalization (Dieterle et al. 2006)

prior to all analyses, including resonance quantification.

Resonances were quantified (relative, not absolute) using

peak height as this method had better performance than

both curve fitting and numeric peak integration for this data

set (see supplementary information Metabolite Quantifi-

cation section). Multivariate data analysis was conducted

using 1H NMR spectra and quantified metabolites scaled to

unit variance, unless otherwise stated. In the following we

use the term ‘quantified data’ to refer to data in which each

variable corresponds to a quantified peak. Similarly, we use

the term ‘spectral data’ to refer to data in which each

variable corresponds to an individual data point in the

preprocessed spectrum.

2.5 PLS regression models and selection of influential

variables

The following logistic regression extensions to PLS were

assessed using Fort’s matlab package (Fort 2005): RPLS

combines PLS and Ridge penalized logistic regression

(Fort and Lambert-Lacroix 2005); NR combines PLS to

reduce dimensionality with proportional hazard regression

model for survival analysis (Nguyen and Rocke 2002);

IRPLS extends PLS into the framework of generalized

linear regression using iterated weighted least-squares

algorithm (Marx 1996); IRPLSF extends PLS in the con-

text of generalized linear regression using iteratively

reweighted PLS (Ding and Gentleman 2004). All models

were fitted with three components and a classification

threshold of 0.5. The number of PLS components was

chosen through R2
Y

curve analysis on a subset of 80 % of

the sample size. The number of components used in all

models was the same to make comparisons meaningful and

also because results were very similar as all algorithms

are essentially different implementation of PLS logistic

regression. These models were compared to standard PLS-

DA and O-PLS-DA implemented by in-house matlab

scripts. O-PLS-DA (Trygg and Wold 2002) was parame-

terized with one predictive component and two orthogonal

components (Cloarec et al. 2005b) using the same proce-

dure. Prediction performance was assessed by the jackknife

estimate of the coefficient of determination R2
y
, by predic-

tivity and classification error rate (ER), both calculated

using leave one out cross-validation. ER was estimated on

the test set and is defined as the ratio between the total

number of classification errors and the total number of

samples classified.

The statistical significance of the regression coefficients

was calculated using a one-sample t test with null hypothesis

that the coefficient is zero using the jackknife estimate of the

standard error. Multiple hypothesis testing correction was

applied using Storey’s false discovery rate. Variables were

deemed influential if their corresponding coefficients were

statistically significant (at a = 0.05 and/or FDR = 0.1) and

Characterization of data analysis methods for information recovery 1173

123



their effect sizes were meaningful (|B| [ 0.01). For high

resolution 1H NMR spectra, an additional constraint is

required to consider a metabolite to be influential due to the

high dimensionality and because metabolite resonances

correspond to several spectral variables. Only metabolites

with more than two influential (a = 0.05 and/or

FDR = 0.1, |B| [ 0.01) spectral variables on the same res-

onance are considered to be putatively relevant for the

description of the model of the condition. Regardless of this

additional constraint, all influential spectral variables were

analysed and depicted in figures because their visualisation

is necessary to decide the minimum meaningful effect size.

That is, varying a threshold on the absolute regression

coefficient until the number of spurious signals on the base

line is decimated can be used to mitigate false positives and

self-calibrate the minimum effect size that can be detected

above noise level. In this study, to make results comparable

across methods we have kept this threshold constant. The

accuracy of the variable selection process was judged by

comparing results obtained using volcano plots on quanti-

fied data with expected results from the experimental

design. We have judged success in two ways: first com-

paring the univariate analyses (including volcano plots) with

the theoretical design; secondly we have used the volcano

plots as the ‘truth’ to judge success of the multivariate

methods. That is, we expect multivariate methods to select

influential variables from the set of metabolites that show

significant and meaningful changes on the observed data

as opposed to using only theoretical data. Multivariate

regression methods aim at identifying a set of variables that

can accurately predict a dependent variable (class mem-

bership in this case) while univariate t test aims to identify

mean differences between groups of data. Although some

correspondence of results is expected, it does not necessarily

follow that multivariate regression will select all variables

found to be significant in a univariate test.

3 Results

3.1 NMR spectra and metabolite peak assignment

Figure 1 illustrates overlays of the metabolite resonances

observed in the NMR spectra. Of the identified metabolites,

13 could be accurately quantified (76 % of all identified

metabolites). The remaining four (indoxyl sulphate, xan-

thine, ureidopropionate and tyrosine) produced resonances

that were either too small or overlapped. Details of quan-

tified metabolites are shown in supplementary information

Table S1.

As expected, some additional signals were observed,

possibly due to impurities and/or contaminants; these are

not included in the statistical analysis. Due to the high

concentration of creatinine, its 13C satellites for both the

3.04 and 4.05 ppm resonances could be clearly identified.

An unknown peak with very low intensity was found in ten

samples (singlet at 3.71 ppm), this could be due to con-

taminants in the laboratory environment or NMR tubes.

Fig. 1 1H NMR spectra of all samples of the artificial mixture with assigned resonances. Abbreviations: TMA trimethylamine; TMAO
trimethylamine N-oxide
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Two samples exhibited large peak position shifts of some

metabolites (e.g. citrate and paracetamol) owing to their

high pH, as expected from their known composition.

3.2 Differential analysis of quantified metabolite

concentration levels

A range of statistical tests were applied to the quantified

and theoretical concentrations to determine the extent to

which the designed class differences in mean concentra-

tions were reproduced in the experimental data. The results

for the Welch-Student t test showed a good agreement

between both datasets as shown in Table 2.

The statistical significance was correctly inferred for 12

out of 13 metabolites. Only paracetamol is unexpectedly

declared as a differentially concentrated metabolite. The

difference between group mean intensities was relatively

small, corresponding to less than 5 % of the mean value

(1.21 and 1.27 for normal and disease respectively) and the

standard deviation very low (as expected), producing

the significant p value. This anomalous finding could be

explained in part by spectral normalization since paraceta-

mol quantified in non normalised spectra was not signifi-

cantly different (p = 0.11) and also by chance since random

fluctuations could produce a significant result if 21 metab-

olites are analysed at a significance threshold of a =

0.05 (probability of at least one significant result = 1 -

(1 - 0.05)21 = 0.66). After applying a Storey false dis-

covery rate correction (FDR = 0.05), it was possible to

correctly identify all metabolites with significant differ-

ences. Other tests, including Mann–Whitney, bootstrap t and

permutation tests gave broadly similar results but were not

as successful in identifying the differential metabolites (see

supplementary information Table S2). The standard devia-

tion in both normal and disease classes was almost identical

as intended in the original design.

Figure 2 shows volcano plots comparing the log2 fold

change and the statistical significance from the t test for the

Table 2 Differential

concentration analysis of the

quantified and theoretical

concentrations

In the p values column, the

entries in bold are statistically

significant at a = 0.05

Metabolite p value (t test) Quantified mean Quantified standard deviation

Theoretical Quantified Normal Disease Normal Disease

Valine 0.872 0.505 0.071 0.074 0.02 0.02

D-3-hydroxybutyrate 0.313 0.935 1.044 1.040 0.18 0.18

Alanine 0.180 0.075 0.851 0.932 0.16 0.18

Succinate 0.473 0.217 1.045 1.104 0.17 0.20

Citrate 0.637 0.950 4.794 4.812 1.13 1.16

Creatinine 1.000 0.253 49.848 50.986 3.66 3.96

TMAO 0.061 0.090 12.278 10.124 4.97 4.71

Guanidinoacetate 0.941 0.652 3.269 3.410 1.36 1.01

TMA 0.044 0.010 0.815 1.045 0.33 0.34

Isocitrate 0.001 0.005 0.193 0.163 0.04 0.04

Hippurate 0.851 0.829 2.337 2.381 0.84 0.73

Paracetamol 1.000 0.02 1.210 1.270 0.09 0.10

NMND 0.723 0.571 0.069 0.065 0.03 0.03
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Fig. 2 Analysis of theoretical versus quantified effect size and p value. Volcano plot of the log intensity ratio versus log p value: a theoretical

and b quantified concentration using Welch t test
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theoretical and quantified data. Metabolites with large

effect size (isocitrate, TMAO, TMA, alanine) show similar

ratios and p values in theoretical and quantified data,

except for paracetamol as discussed above.

Overall, the comparison shows that the volcano plot is

an effective tool to distinguish the significant and important

metabolites that change between conditions and that the

dataset is very challenging for any statistical procedure

(as intended). In the following we intend to compare

methods. As expected, owing to technical issues, there are

some differences between the theoretical and observed

data. Therefore, instead of comparing theoretical versus

observed data we consider influential metabolites to be

correctly identified if they are consistent with the volcano

plot analysis (i.e. the top five metabolites corresponding to

p \ 0.09 in Fig. 2).

3.3 Differential analysis of high resolution 1H NMR

spectral data

A similar approach as that described in the last section for

identifying differentially concentrated metabolites was

applied to the 1H NMR spectral intensities. However, an

additional threshold on the effect size was also considered;

only spectral variables with absolute log2 fold change[0.5

and FDR \ 0.1 were considered influential. A bootstrap as

well as a parametric Welch t test with Storey’s FDR cor-

rection was applied to detect significant differences

between the group means of all NMR signals. Metabolites

with more than two significant spectral variables in the

same resonance were considered discriminatory and are

labelled in supplementary information Fig. S3. Metabolites

designed to be statistically significant were detected by

both techniques and surprisingly the parametric Welch test

produced more conservative results than the bootstrap

version. The metabolites identified as differential using the

Welch t test both in 1H NMR spectra and quantified data

were similar. Paracetamol was considered correctly iden-

tified because the result obtained in 1H-NMR matches the

quantified analysis. On the other hand, the bootstrap

approach was more sensitive additionally detecting alanine,

which is almost statistically significant (p = 0.075) in

quantified data.

3.4 Comparison of regression models for discriminant

analysis with quantified data

A comparison of PLS linear and logistic regression models

was performed to select the most suitable methods for the

analysis of quantified metabolic profiles. The performance

criteria were out-of-sample prediction accuracy as well

as the ability to accurately identify the metabolites that

change concentration between conditions. Results in terms

of variable selection were very satisfactory (see Table 3),

and largely agree with the volcano plot of the quantified

metabolites (Fig. 2).

Individually, the regression methods had distinct char-

acteristics both in terms of performance and variable

selection accuracy. PLS, O-PLS and RPLS achieved sim-

ilarly high predictivity and selected coherent sets of vari-

ables with significant FDR (a\ 0.05 and FDR \ 0.1).

However, in terms of variable selection, O-PLS was the

most sensitive, identifying five influential metabolites,

which were the same top five metabolites as identified in

the volcano plot (Fig. 2) with p \ 0.09.

Overall, despite the very large dynamic range in mean

peak height of the quantified metabolites ([0.065, 50.9]

arbitrary units), all models consistently selected the dif-

ferential metabolites while achieving reasonable out-of-

sample classification ER. Logistic regression models did

not produced significantly better out-of-sample ER or

goodness of fit than linear regression.

3.5 Comparison of regression models for discriminant

analysis with high resolution spectral data

Next we extended the comparison of regression models to

the high resolution spectral data and compared this with the

same models fit to quantified data. Interestingly, all methods

performed significantly better on spectral than on quantified

data in terms of predictivity, ER and coefficient of deter-

mination (see Table S3 in supplementary information).

Surprisingly, variable selection accuracy was similar to

results obtained in quantified data for most methods

(Fig. 3a–d). O-PLS and IRPLS did not select any signifi-

cant signals (FDR \ 0.1) using the proposed approach

based on FDR correction of the coefficient p values and are

therefore not presented. We report the reanalysis of the

O-PLS model using the conventional approach with mean

centred data in the next section (see Fig. 3e).

Spuriously selected variables could be easily discarded as

they typically consisted of isolated data points and did not

correspond to a visible NMR peak (see supplementary

information Fig. S5). Although a fixed threshold on the

level of the regression coefficient was applied to make

Fig. 3 Comparison of regression models applied to 1H NMR spectra

with signals of the statistically significant coefficients depicted in red

(FDR \ 0.1). Significant peaks are identified and labelled. Identified

peaks consistent with volcano plot analysis are marked with a green
tick or with a red cross otherwise. All models were applied to 1H

NMR spectra scaled to unit variance except panel E. a PLS, b RPLS,

c IRPLSF, d NR. Results for O-PLS and IRPLS are omitted because

no statistically significant signals were found using unit variance

scaling. e O-PLS DA coefficients fit to mean centred spectra using the

method of (Cloarec et al. 2005a) for variable selection where

the colour scale indicates the squared correlation to the class variable

(0 or 1) and only peaks with are annotated (Color figure online)

c
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results comparable, varying the threshold until spurious

significant results on the baseline are decimated can be used

to calibrate the minimum effect size that can be detected

above noise level, reducing even further the number of

spurious signals. Overall, this approach to variable selection

was capable of identifying all metabolites that change

concentration levels between conditions significantly.

Results for PLS, RPLS, IRPLSF and NR were very similar,

selecting more variables in 1H NMR spectra than in quan-

tified data. These results confirm that analysis of high res-

olution spectral data can reveal additional sample content

information even when quantified data is available.

3.6 Comparison to conventional variable selection

using O-PLS discriminant analysis

Orthogonal PLS discriminant analysis models were fit to

mean centred spectra and variable selection was performed

according to the approach proposed by (Cloarec et al.

2005a) (Fig. 3e). Despite low predictivity ðQ2
Y ¼ �0:04Þ;

the model correctly identified TMA, paracetamol and ala-

nine. Guanidinoacetate was incorrectly selected. In order to

assess the impact of variable scaling and peak alignment,

the same analysis was conducted on unit-variance scaled

spectra but no significant differences on variable selection

accuracy were observed as opposed to peak alignment

where performance declined (see supplementary Fig. S6).

Although the conventional approach to O-PLS model

analysis successfully identified metabolites changing sig-

nificantly, it was less sensitive and accurate than either

O-PLS results on quantified data (Table 3) or the other

models on 1H NMR spectra (Table S3; Fig. 3). Conversely,

the main advantage of the jackknife method used here is an

objective cut-off for variable selection that provides con-

fidence levels for individual signals. As with any approach,

spurious results may occur, especially with low intensity

signals. This can be mitigated by controlling the false

discovery rate and visualising the significant variables in a

spectral format as in Fig. 3. This aids the practitioner in

discriminating spurious from true hits corresponding to

peak resonances (as shown in the supplementary informa-

tion Fig. S5). A brief comparison of the variables selected

by the multivariate methods on quantified and spectral data

is provided in supplementary information Table S4.

4 Discussion and conclusions

Previous work on the assessment of data analysis methods

on 1H NMR spectra focused mainly on simulated data or

data from biological samples. These approaches can reveal

important information regarding the spectral characteristics

that impact data analysis methods. However, assessment of

data analysis methods for metabolite selection is hampered

owing to a lack of knowledge of the exact sample com-

position. In this study, an artificial complex mixture design

was implemented. The metabolite concentrations reflect

levels typically found in human urine and have a well

defined correlation structure. This design addresses

important biomarker discovery issues such as technical

variation and biological variation, as well as the effect of

concentration distribution and correlation structure in dif-

ferent biological conditions. This data is therefore partic-

ularly attractive to assess univariate and multivariate

statistical methodologies that are applied to metabolomics

datasets. The 1H NMR spectra from these samples accu-

rately reproduced the planned characteristics, as demon-

strated by the analysis of the metabolite concentration

profiles including statistical tests for differences between

groups.

This work assessed methods for the analysis of metab-

olite concentration differences. Volcano plots provided an

excellent method to track the effect size and significance of

the change between conditions, allowing comparison of

metabolite behaviour of the quantified and theoretical data,

and offering a degree of protection against very small

but nominally significant effects. On quantified data, the

Welch-Student t test was most successful at identifying the

metabolites designed to differentiate the conditions. Other

tests generated a number of false positive or negative

results. Interestingly, the Welch t test detected similar

differential metabolites in both quantified and spectral data

suggesting that differential analysis of full resolution 1H

NMR spectra using FDR correction, taking into account

fold changes, is a reliable approach to detect differential

metabolites in complex mixture studies.

Various multivariate regression methods were applied in

discriminant analysis mode and a jackknife based strategy

for variable selection was assessed on both quantified and

spectral data. The results indicate that it may be possible to

improve on the conventional methodology of (Cloarec

et al. 2005b) in terms of accuracy and sensitivity. As

expected, models fit to spectral 1H NMR spectra could

recover important information beyond that in the quantified

data (e.g. variation of signals not incorporated in the

design) and this lends weight to the strategy that discrim-

inant analysis of quantified data should be complemented

with analysis of spectral spectra. A key element of our

approach consists of objective criteria to select significant

signals associated with a condition that provides a confi-

dence level on the discoveries made. These results extend

earlier findings of (Chadeau-Hyam et al. 2010; Westerhuis

et al. 2008) because our method does not rely on permu-

tation analysis which is potentially faster for typical sample

sizes, reduces the bias of the coefficients as a consequence

of the jackknife estimator and provides confidence
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intervals for the regression coefficients. The most reliable

methods in quantified and spectral 1H NMR data were PLS

and RPLS linear and logistic regression respectively. We

suggest the use of logistic regression models in discrimi-

nant analysis owing to enhanced interpretability since

logistic regression coefficients provide direct information

on the odds ratio of each variable. Logistic regression

methods can potentially achieve lower ERs over simple

linear regression methods owing to the linkage function

and error model.

Some limitations are also worth noting. Even in a

designed experiment several challenges were observed.

The pH of some samples was inevitably high due to par-

ticular combinations of concentrations. This produced

significant variation of the resonance peak position in two

spectra. Local and global peak alignment methods can be

used to mitigate this effect, but analyses conducted on this

data suggest that peak alignment may introduce artefacts.

In this experimental design using artificial mixtures with-

out a complex biological background, peak height showed

good quantification accuracy. However, in spectra of

complex real biofluids, quantification methods based on

peak fitting may be preferable due to variable line widths

and difficulties resolving overlapped peaks. Nevertheless,

the data generated by this experimental design is a formi-

dable resource for future work including cross-platform

comparison and integration of analytical techniques and for

the development of new data analysis methods.
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