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Abstract. In this paper we give a characterization for the set of
periods for a class of skew–products that we can see as determinis-
tic systems driven by some stochastic process. This class coincides
with a set of skew product maps from ΣN × S1 into itself, where
ΣN is the space of the bi–infinite sequences on N symbols and S1

is the unit circle.

1. Introduction

In 1970’s Afraimovich and Shilnikov [1] described the semi–hyperbolic
invariant set generated by a bifurcation of several homoclinic surfaces of
a saddle–node cycle. The invariant set in the last bifurcation is homeo-
morphic to the product space ΣN × S1, where ΣN = {0, 1, . . . , N − 1}Z
is the space of all bi–infinite sequences

(1.1) a = (. . . , a−n, . . . , a−1 · a0, a1, . . . , an, . . .)

of symbols 0, 1, . . . , N − 1 (we note that in this paper we shall use the
same notation as in [9]). The dynamics on the invariant set above,
after some rescaling, give rise to a skew product as follows. Let a =
(. . . , a−1.a0, a1 . . .) ∈ ΣN then σ : ΣN → ΣN , the shift map, is given by

(1.2) σ(a) = (. . . , a−1, a0 · a1, a2, . . .).

Let Hom(S1) be the set of homeomorphisms on S1 and let G ⊂Hom(S1)
be an abelian group. For f = (f0, f1, . . . , fN−1) ∈ GN define the map

(1.3) Φf : ΣN × S1 → ΣN × S1

given by

(1.4) Φf (a, x) = (σ(a), fa0(x)).
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Φf is called the skew product associated to σ and f (see [8]) or, following
the notation of [4], the crazy map associated to f . Note that the n–th
iterate of this map at the point (a, x) ∈ ΣN × S1 is given by

(1.5) Φn
f (a, x) = (σn(a), (fan−1 ◦ · · · ◦ fa1 ◦ fa0)(x)).

On the other hand, the map f : ΣN × S1 → S1 defined by f(a, x) =
fa0(x), is also called a Random Dynamical System or cocycle (see [3]).
We can consider these maps as particular examples of random dy-
namical systems. Moreover, this class of maps provides, by using an
analogue of Takens Theorem for randomly forced systems (see [8]), a
new framework for the analysis of time series arising from nonlinear
stochastic systems. To see this, consider % : S1 → R a measurement
function which measures some observable property of the system. The
evolution of this quantity with discrete time is then given by

{
% (x) , % (fa0(x)) , . . . , %

(
(fan−1 ◦ · · · ◦ fa1 ◦ fa0)(x)

)
, . . .

}
,

where x is considered as the initial condition and a represents some of
the all the possible states of the world described by ΣN . Then, the set of
periodic points of the skew product Φf provides stationary time series
which does not depend on of the measurement function. Thus, the set
of periods for a map Φf gives, in some sense, a lower bound to the
cyclical behavior and it does not depend on the chosen measurement
function. We point out that a characterization of the set of periods
also provides a first approach to understand the dynamic behavior of
the mapping class under consideration.

A first work in order to characterize the set of periods of skew product
maps was done by Kloeden in [7]. He considered a skew product given
by

(1.6) F (x, y) = (f (x) , g (x, y)) ,

where f : I → I and g : I × I → I are continuous mappings and I =
[0, 1]. In this setting, he proved that Ŝarkovskii’s Theorem holds for this
class of maps. Later, motivated by a previous work of Illiashenko [6],
the set of periods for maps Φf with f = (x+ α0 (mod 1), x+ α1 (mod 1))
and (α0, α1) ∈ R2 was characterized in [4]. The main goal of this
paper is to give a characterization of the set of periods of Φf when
each component of f belongs to a some closed commutative subgroup
G ⊂Hom(S1).

The paper is organized as follows. In the next section we give some
basic definitions and state the main result of this paper which gives the
characterization of the set of periods for random dynamical systems
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given by N commutative homeomorphisms. In Section 3, the results
stated in Section 2 will be proved.

2. Definitions and statement of results

Let G be a commutative subgroup of homeomorphisms of S1, that
is, f ◦ g = g ◦ f for all f, g ∈ G. For any homemorphism f notice
that G(f) := {g ∈ Hom(S1) : g ◦ f = f ◦ g} contains at least three
elements. Moreover, let Diffr(S1) be the set of Cr–diffeomorphisms of
S1. If f ∈Diffr(S1), then G(f) contains the closure of

{
fk : k ∈ Z

}
in

the Cr–topology (see [5]).
Recall that a point (a, x) is said periodic if there is a positive integer

n such that Φn
f (a, x) = (a, x). The smallest positive integer holding this

condition is called the period of (a, x). Periodic points of period one
are called fixed points. Denote by P(Φf ) and F(Φf ) the sets of periodic
and fixed points of Φf , respectively. By Per(Φf ) we will denote the set
of periods of Φf .

Let f ∈ GN
1 and g ∈ GN

2 , where G1 and G2 are two commutative
groups of Hom(S1). We will say that the maps Φf and Φg are topolog-
ically conjugated if there exists an homeomorphism h : ΣN × S1 −→
ΣN × S1 such that h ◦ Φf = Φg ◦ h. Note that if Φf and Φg are topo-
logically conjugate then Per(Φf ) = Per(Φg). A stronger definition than
the topological conjugacy condition and weaker than the definition of
bundle conjugacy, introduced by Stark in [8], is the following. We will
say that Φf and Φg are weakly bundle conjugate if Φf and Φg are topo-
logically conjugated by a homeomorphism h : ΣN × S1 −→ ΣN × S1,
where h(a, x) = (g(a), h2(a, x)) . We remark that, under this condition,
g must be a homeomorphism from ΣN into itself satisfying g◦σ = σ◦g.
Moreover, if g = id then we say that Φf and Φg are bundle conjugate
(see [8]).

Let SN denote the group of permutations of N elements, that is, the
set of all bijective maps τ from {0, 1, . . . , N−1} into itself. For τ ∈ SN
we define τ ∗ : GN → GN by

(2.1) τ ∗ ((f0, f1, . . . , fN−1)) =
(
fτ(0), fτ(1), . . . , fτ(N−1)

)
.

The first main result that we will prove in Section 3 is the following.

Theorem 1. Let N ∈ N, N ≥ 2, and f ∈ GN . Then, for each τ ∈ SN
the maps Φf and Φτ∗(f) are weakly bundle conjugated. In particular, Φf

and Φτ∗(f) are conjugated.

The second main result is concerned with the set of periods of Φf

for some f ∈ GN . Before stating the result, we need some additional
definitions and notation from [2]. Let f : S1 → S1 be a continuous
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circle map and consider the natural projection e : R → S1 given by
e(x) = exp(2πix). A continuous map F : R→ R such that e◦F = f ◦e
is called a lifting of f . Let

L = {F : R→ R : F is a lifting of f}.
If F1, F2 ∈ L, then F1 = F2 + k for some k ∈ Z. Notice that for all
F ∈ L,

(2.2) F (1)− F (0) = deg(f) ∈ Z
and it is called the degree of f . If g : S1 → S1 is another continuous
circle map, then

(2.3) deg(f ◦ g) = deg(f) · deg(g)

and

(2.4) deg(fn) = deg(f)n

for all n ∈ N.
Notice that if f ∈ Hom (S1), then F is always strictly increasing or

strictly decreasing. Moreover, since f ◦ f−1 = id, by (2.3) it holds that

(2.5) 1 = deg(id) = deg(f ◦ f−1) = deg(f) · deg(f−1).

Then, either deg(f) = deg(f−1) = 1 or deg(f) = deg(f−1) = −1. In
the case of deg(f) = 1, a useful tool to describe the set of periods of f
is the rotation number of their liftings. For all F ∈ L let

(2.6) ρ(F ) := lim
n→∞

F n(x)− x
n

for some x ∈ S1. It can be shown (see [2]) that (2.6) does not depend
on the choice of x ∈ S1 and ρ(F ) − ρ(F ′) ∈ Z for all F ′, F ∈ L.
Roughly speaking, ρ(F ) is the average of angular speed of any point
moving around the circle under iteration of the map. Then, we have
the following result (see [2]).

Proposition 1. Let f ∈ Hom (S1). If F(f) denotes the set of fixed
points of f the following statements hold.

(a) Let deg(f) = −1. Then F(f) 6= ∅.
(b) Let deg(f) = 1. Then F(f) 6= ∅ if and only if ρ(F ) ∈ Z for all

F ∈ L.

Now, we can state our second main result. From now one, we will
denote by Fi the lifting of fi for i = 0, 1, . . . , n− 1.

Theorem 2. Let N ∈ N, N ≥ 2, and f = (f0, f1, ..., fN−1) ∈ GN .
Then
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(a) If there are i, j ∈ {0, 1, ..., N − 1}, i 6= j, such that deg(fj) ·
deg(fi) = −1, then Per(Φf ) = N.

(b) If deg(fi) = −1 for all i ∈ {0, 1, ..., N − 1}, then N \ {2} ⊆
Per(Φf ). Moreover, 2 ∈ Per(Φf ) if and only if either 2 ∈ Per(fi)
for some i ∈ {0, 1, ..., N − 1} or ρ(Fi ◦ Fj) ∈ Z for some i, j ∈
{0, 1, ..., N − 1}, i 6= j.

(c) If deg(fi) = 1 for all i ∈ {0, 1, ..., N − 1}, then n ∈ Per(Φf )
if and only if either n ∈ Per(fi) for some i ∈ {0, 1, ..., N − 1}
or n /∈ Per(fi) for all i ∈ {0, 1, ..., N − 1} and there exists
(λ0, λ1, . . . , λN−1) ∈ NN , with Card{i : λi 6= 0} ≥ 2, such that∑N−1

i=0 λi = n and
∑N−1

i=0 λiρ(Fi) ∈ Z.

This theorem gives a characterization of the set of periods for skew
products given by N commuting homeomorphisms. The rest of the
paper is devoted to the proofs of Theorems 1 and 2.

3. Proofs of results

We start this section by proving Theorem 1.

Proof of theorem 1. Let τ ∈ SN and

τ ∗ (f) =
(
fτ(0), fτ(1), . . . , fτ(N−1)

)
.

Let gτ : ΣN → ΣN be defined by

gτ (a) = (..., τ−1(a−n), ..., τ−1(a−1) · τ−1(a0), τ−1(a1), ..., τ−1(an), ...)

for all a = (..., a−n, ..., a−1 · a0, a1, ..., an, ...) ∈ ΣN . Clearly, gτ is a
homeomophism and σ ◦ gτ = gτ ◦ σ. Let h : ΣN × R → ΣN × R be
defined by h(a, x) = (gτ (a), x). Obviously, h is also a homeomorphism
and

h(Φf ((a, x))) = h(σ(a), fa0(x))

= (gτ (σ(a)), fa0(x))

= (σ(gτ (a)), fτ(τ−1(a0))(x))

= Φτ∗(f)(gτ (a), x)

= Φτ∗(f)(h(a, x)).

Thus, Φf and Φτ∗(f) are weakly bundle conjugated and the proof con-
cludes.

In order to prove Theorem 2 we need some preliminary work. We
will start by recalling some known properties of shift maps (see [9]).

Let a ∈ ΣN be a periodic of period n of σ. Then, it is not difficult
to see that a is periodic of period n, that is, ai+kn = ai for all i ∈
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{0, 1, ..., n − 1} and all k ∈ N. Then we write periodic sequence by
putting the block of length n starting by a0, that is

(3.1) a = (a0, a1, a2, . . . , an−1).

We observe that, for a given f ∈ GN
r , the n–th iterate of Φf at the

point (a, x) ∈ ΣN × S1 is given by

(3.2) Φn
f (a, x) =

(
σn(a), f

λn0 (a)
0 ◦ fλ

n
1 (a)

1 ◦ · · · ◦ fλ
n
N−1(a)

N−1 (x)
)

where

(3.3) λni (a) =
n−1∑

j=0

δi,aj

(recall that δi,aj = 1 if aj = i and δi,aj = 0 otherwise) for i =
0, 1, . . . , N − 1. Note that λni (a) gives the number of i’s in the finite set
{a0, . . . , an−1} .
Lemma 1. For each n ∈ N, the following statements hold.

(a) There exists a ∈ ΣN periodic of period n.

(b) Let k0, k1, . . . , kN−1 ∈ N∪{0}. If
N−1∑
i=0

ki = n > 0, then there ex-

ists a periodic sequence of period n, a ∈ ΣN , such that λni (a) =
ki for l = 0, 1, . . . , N − 1.

Proof. Statement (a) follows if we take, for each n ∈ N, the periodic
sequence

a =


0, ..., 0, 1︸ ︷︷ ︸

n


 .

To prove (b) it is sufficient to take the periodic sequence

a =


0, ..., 0︸ ︷︷ ︸,

k0

1, ..., 1︸ ︷︷ ︸
k1

, ..., N − 1, ..., N − 1︸ ︷︷ ︸
kN−1


 .

Lemma 2. Let f = (f0, f1, . . . , fN−1) ∈ GN
r , then Per(fi) ⊆ Per(Φf )

for all i ∈ {0, 1, . . . , N − 1} .
Proof. If Per(fi) = ∅, then there is nothing to prove. So, assume that
n ∈ Per(fi) 6= ∅. Clearly,

((
i
)
, x
)

is a periodic point of period n of Φf .
and the proof concludes.

Lemma 3. Assume that (a, x) is a periodic point of Φf of period n. If
there exists i ∈ {0, 1, . . . N − 1} such that λni (a) = n, then n ∈ Per(fi).
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Proof. If λni (a) = n, λnj (a) = 0 for all j ∈ {0, 1, . . . N − 1} , j 6= i, then

it is clear that a = (i). Since Φj
f ((i), x) = ((i), f ji (x)) 6= ((i), x), we have

that f ji (x) 6= x for 0 < j < n and fni (x) = x. Therefore n ∈ Per(fi).

The following lemma follows from [5, Proposition 2.11], and will be
used without citation in the proof of Theorem 2.

Lemma 4. Let f, g ∈ G and let F and G be the liftings of f and g,
respectively. Then

ρ(F ◦G) = ρ(F ) + ρ(G).

Now, we are ready to prove Theorem 2.

Proof of theorem 2 Let n ∈ N. (a) Assume that deg(fi) = 1 and
deg(fj) = −1 for some i, j ∈ {0, 1, ..., N − 1}. By (2.3) and (2.4)

deg(fn−1
i ◦ fj) = deg(fi)

n · deg(fj) = −1.

By Proposition 1(a), there exists x0 ∈ F
(
fn−1
i ◦ fj

)
. Then, it is easy

to see that 


i, i, ..., i, j︸ ︷︷ ︸

n


 , x0


 ∈ P (Φf )

and n ∈ Per (Φf ) . Thus, (a) is proved.
(b) We will distinguish three cases: (b1) n is odd, (b2) n = 4m, for

some m ∈ N, and (b3) n = 4m+ 2 for some m ∈ N.
(b1) Assume that n is odd. By using (2.3) and (2.4) we obtain that

deg(fn−1
0 ◦ f1) = deg(f0)n deg(f1) = −1.

Then, from Proposition 1(a), there exists x0 ∈ F
(
fn−1

0 ◦ f1

)
, and

hence, 


0, 0, ..., 0, 1︸ ︷︷ ︸

n


 , x0


 ∈ P (Φf ) .

So, n ∈ Per(Φf ).
(b2) Now, assume that n = 4m, for some m ∈ N. Notice that from

(2.4), we have that deg(f 2
0 ) = deg(f 2

1 ) = 1. Since f0 and f1 have degree
−1, by Proposition 1(a), both maps have at least a fixed point. Then
f 2

0 and f 2
1 have also a fixed point. Again, Proposition 1(b) implies that

ρ(F 2
0 ) and ρ(F 2

1 ) are integer numbers. By using Lemma 4, we have
that

ρ(F
n/2
0 ◦ F n/2

1 ) = ρ(F 2m
0 ◦ F 2m

1 ) = mρ(F 2
0 ) +mρ(F 2

1 ) ∈ Z.
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Finally, by Proposition 1(b), there exists x0 ∈ F (f 2m
0 ◦ f 2m

1 ) . There-
fore, 




0, 0, ..., 0︸ ︷︷ ︸

n
2

, 1, 1, ..., 1︸ ︷︷ ︸
n
2


 , x0


 ∈ P (Φf )

and n ∈ Per(Φf ).
(b3) Finally, let n = 4m + 2, for some m ∈ N. Following the steps

of the proof of (b2) it follows that

ρ(F n−2
0 ◦ F 2

1 ) = ρ(F 4m
0 ◦ F 2

1 ) = 2mρ(F 2
0 ) + ρ(F 2

1 ) ∈ Z.
From Proposition 1(b), there exists x0 ∈ F (f 4m

0 ◦ f 2
1 ) and, hence,




0, 0, ..., 0︸ ︷︷ ︸

n−2

, 1, 1


 , x0


 ∈ P (Φf )

and n ∈ Per(Φf ).
To end the proof of statement (b), if 2 ∈ Per(fi) for some i ∈
{0, 1, ..., N−1}, then by applying Lemma 2, 2 ∈ Per(Φf ). If ρ(Fi◦Fj) ∈
Z, then by Proposition 1, there is an x0 such that (fi ◦ fj)(x0) = x0.
We note that (

(
0, 1
)
, x0) is a periodic point of Φf of period 2, and

therefore 2 ∈ Per(Φf ). Conversely, if 2 ∈ Per(Φf ), then there is
a periodic sequence a∈ ΣN of period 1 or 2, and an x0 such that
Φ2

f (a, x0) = (a, x0). If a has period one, then by Lemma 3, 2 ∈ Per(fi)
for some i ∈ {0, 1, ..., N 1}. If a has period two, then there are
i, j ∈ {0, 1, ..., N − 1}, i 6= j, such that (fi ◦ fj)(x0) = x0. From
Proposition 1(b), ρ(Fi ◦ Fj) ∈ Z and this concludes the proof of (b).

(c) Assume first that n ∈ Per(Φf ). If n ∈ Per(fi) for some i ∈
{0, 1, ..., N−1}, then the proof concludes. So, assume that n /∈ Per(fi)
for all i ∈ {0, 1, ..., N − 1}. Let (a, x0) be such that

Φn
f (a, x0) = (a, x0).

Then a is a periodic sequence of period k such that k divides n. Let

a = (a0, a1, ...ak−1) ∈ ΣN .

Notice that, by Lemma 3, there are at least two distinct symbols in a.
It is easy to see that x0 is a periodic point of

fak−1
◦ ... ◦ fa0 = f

λk0(a)
0 ◦ ... ◦ fλ

k
N−1(a)

N−1 .

of period n/k. Then

x0 ∈ F
(
f
λk0(a)·n/k
0 ◦ ... ◦ fλ

k
N−1(a)·n/k

N−1

)
.
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From Proposition 1(b), we have that

ρ
(
F
λk0(a)·n/k
0 ◦ ... ◦ F λkN−1(a)·n/k

N−1

)
=

N−1∑

i=0

λki (a) · n
k

ρ(Fi) ∈ Z.

On the other hand, it is obvious that

N−1∑

i=0

λki (a) · n
k

= n,

and so, taking

λki (a) · n
k

= λi

the necessary condition holds.
Conversely, let n ∈ N such that either n ∈ Per(fi) for some i ∈
{0, 1, ..., N − 1} or n /∈ Per(fi) for all i ∈ {0, 1, ..., N − 1} and there
exists (λ0, λ1, . . . , λN−1) ∈ NN , with Card{i : λi 6= 0} ≥ 2 such that

N−1∑

i=0

λi = n

and
N−1∑

i=0

λiρ(Fi) ∈ Z.

If n ∈ Per(fi) for some i ∈ {0, 1, ..., N − 1}, then by Lemma 2, n ∈
Per(Φf ). Assume now that n /∈ Per(fi) for all i ∈ {0, 1, ..., N − 1} and
the above conditions hold. By (2.3) and (2.4)

ρ(F λ0
0 ◦ ... ◦ F λN−1

N−1 ) =
N−1∑

i=0

λiρ(Fi) ∈ Z,

Then, from Proposition 1(b), there is an x0 ∈ S1 such that (fλ0
0 ◦ ... ◦

f
λN−1

N−1 )(x0) = x0. Hence,




0, ..., 0︸ ︷︷ ︸,

λ0

1, ..., 1︸ ︷︷ ︸
λ1

, ..., N − 1, ..., N − 1︸ ︷︷ ︸
λN−1


 , x0


 ∈ P (Φf )

and therefore n ∈ Per(Φf ). This concludes the proof.
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