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Universitat Autònoma de Barcelona,

08193 Bellaterra, Barcelona, Spain

Abstract

By using symbolic dynamics we describe the bifurcations of a family of continuous circle
maps. This provides an approximation to the description of the qualitative behavior for a
system of the Van der Pol type.

1 Introduction.

We study the bifurcations in a three parameter family f = f(., b, δ) of C0 maps of the circle into
itself of degree one, with the parameters ranging in b1 ≤ b ≤ b2, 0 < δ ≤ δ, and satisfying the
following properties:

There exist γ > 1, k > 1/γ, c > 0 and an interval ∆ ⊂ S1 whose endpoints depend on b
and δ such that |∆| < δ and

f ′(x) > kγ for all x ∈ ∆ (1.1)

−1 + c < f ′(x) < −1/γ for all x ∈ S1 \ ∆ (1.2)

−d/db[f(xi(b), b, δ) − xi(b)] > ω > 0, i = 1, 2 (1.3)

where x1(b) and x2(b), are the endpoints of ∆, all differentiable in b, and ω = ω(δ) is
independent of b (see Figure 1.1).

This family is a piecewise-differentiable version of Levi’s circle maps (see [L] p.30-31 or [GH]
p.74-82) which is used to study the following system of the Van der Pol type with periodic
forcing term (see [L]):

ǫẍ + Φ(x)ẋ + ǫx = bp(t) (1.4)

where ǫ > 0 is a small parameter, Φ (damping) is negative for |x| < 1 and positive elsewhere,
p(t) is periodic of period T and b varies in some finite interval [b1, b2]. In particular Φ and p can
be chosen close (in some sense) to the functions Φ0 = sgn(x2 − 1), p0 = sgn sin(2πt/T ).
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Figure 1.1:

In [ALS] the following result is given. It characterizes the dynamics of f for certain values
of b (compare with [L]).

Theorem 1.1 If the map f satisfies (1.1)-(1.3) then for δ small enough the interval [b1, b2]
consist of two alternating types of intervals Ak, Bk separated by (short) gaps gk :

[b1, b2] = A1 ∪ g1 ∪ B1 ∪ g2 ∪ A2 ∪ g3∪, . . . ,∪An ∪ g2n−1 ∪ Bn,

such that:

(A) For b ∈ Ak the map f has exactly two fixed points, one stable and another unstable. More-
over, the basin of attraction of the stable fixed point isthe whole circle except the unstable
fixed point.

(B) For b ∈ Bk the map f has four fixed points, two stable and two unstable. Moreover, these
two unstable fixed points belong to a Cantor set C such that f |C is topologically conjugated
to a certain subshift of finite type.

In fact in [ALS] it is given a first approach to the characterization of the bifurcations of f
as b crosses the gaps gk. The goal of this paper is to give a complete characterization of these
bifurcations. Our main result is the following:

Theorem 1.2 Let gk = (gk,1, gk,2). For every gap gk there exist αk, βk such that gk,1 < αk ≤
βk < gk,2 and

(a) If b ∈ gk, thenf has exactly two fixed points, one stable and another unstable.
(b) If b ∈ (gk,1, αk] then the basin of attraction of the stable fixed point is either the whole
circle except the unstable fixed point or the whole circle except the unstable fixed point
union or xi(b) with i = 1 or 2.

(c) If b ∈ (βk, gk,2) then there exist a Cantor set C ( which depend on b), containing the
unstable fixed point and such that f |C is topologically conjugated to a subshift of finite type.
Moreover, the basin of attraction of the stable fixed point is either the complementary of
the Cantor set C or the complementary of the Cantor set C union ∪∞

n=0f
−n(xi(b)) with

i = 1 or 2.
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(d) If αk 6= βk then the interval (αk, βk] consists of two sets Hk, Lk such that (αk, βk] =
Hk ∪ Lk and Lk (resp. Hk) is closed (resp. open) in (αk, βk] and if b belongs to Lk (resp.
Hk) then the dynamics of f is analogous to the case b ∈ (gk,1, αk] (resp. b ∈ (βk, gk,2)).

The interest in studying the map f as b ∈ gk is due to the fact that by applying Levi’s
techniques to it we can obtain, to a certain level of approximation, the behavior of the flow (1.4)
when b belongs to the bifurcation gaps gk.

The paper is organized as follows. In Section 2 we give some definitions and preliminary
results. In Section 3 we give the proof of Theorem 1.2.

Acknowledgements. We are extremely grateful to the referee, whose suggestions improved
the exposition of the paper.

2 Definitions and preliminary results.

First we give some definitions about circle maps.

Definition 2.1 If f ∈ C0(S1,S1), then a lifting of f is any continuous map F : R −→ R such
that for all X ∈ R, e(F (X)) = f(e(X)) where e : R −→ S1 is defined by e(X) = exp(2πiX).

From now one we will use lower case letters to denote points in S1 and for the corresponding
point in the covering space R we will use the corresponding upper case letter. Also, F will
denote the lifting of f. Since f has degree one for all b, we have that F (X + 1) = F (X) + 1 for
all X ∈ R.

To define the intervals Ak, Bk, gk we need the following result.

Lemma 2.2 ([L]) If f satisfies (1.1)-(1.3), and if δ is small enough, then

1 + C1 < F (X2) − F (X1) < 2 − C2 (2.5)

and the constant 0 < C1 < 1 is independent on b and δ.

From now one we assume that δ is such that Lemma 2.2 holds. Then we have that for f
only one of the following three cases can occur: (see Figure 2.1)

Case A. The set I = f−1(∆) ∩ ∆ is an interval, such that f(I) = ∆ and the endpoints of I
map onto the endpoints of ∆.

Case B. The set I is a union of two disjoint intervals I1 and I2 so that the endpoints of each
Ii map onto the endpoints of ∆.

Case g. f(xi) ∈ Int∆, for i = 1 or 2 (i.e. the set I is a union of two disjoint intervals I1 and
I2 so that the endpoints I1 map onto the endpoints of ∆ and f(I2) is strictly contained in
∆).

Call Ak, Bk, gk the maximal intervals of b for which the corresponding alternative holds.
Since the endpoints of f(∆) move monotonically (clockwise) with respect to the endpoints

of ∆ (see (1.3)) the intervals alternate as stated in Theorem 1.1.
We shall study the bifurcations when b crosses a gap g2k−1 from Ak to Bk (e.g. f(x1(b)) ∈

Int∆). In a similar way, we may study them when b crosses a gap g2k from Bk−1 to Ak. We
describe these bifurcations in terms of symbolic dynamics. So we use the following definitions.

3



Figure 2.1:

Definition 2.3 Let S = 1, 2, . . . ,m and T = (ti,j) an m × m matrix such that ti,j ∈ {0, 1}.
We denote by

∑
T =

∑
(S, T ) the set of infinite sequences a = (ai)

∞
i=0 such that ai ∈ S and

taiai+1
= 1 for all i ∈ Z, i ≥ 0. We define the shift map σ :

∑
T −→

∑
T by σ(a) = (ai)

∞
i=1.

Then the set
∑

T with the shift map σ is called a subshift of finite type with transition matrix
T. If ti,j = 1 for all i, j, then we call it full shift on m symbols. The set

∑
T has a metric defined

by d(a,b) =
∑∞

i=0 γi2
−i where γi = 0 if ai = bi and γi = 1 if ai 6= bi. Then

∑
T is a Hausdorff

compact space and σ is a homeomorphism.

Definition 2.4 Let f ∈ C(S1,S1) and let
∑

⊂ S1 be an invariant set (i.e. f(
∑

) ⊂
∑

)
we say that f |∑ is topologically conjugated to a subshift of finite type σ|∑

T

if there is a

homeomorphism h :
∑

T −→
∑

such that f ◦ h = h ◦ σ.

3 Proof of Main Theorem.

Let f be a continuous map of the circle into itself which satisfies (1.1)-(1.3). Assume that b ∈ gk.
We note that for b ∈ Ak ∪ gk, then f has exactly two fixed points one stable and the other
unstable (see Case A, Case g and Figure 2.1). From now one we denote by u(b) the unstable
fixed point and by s(b) the stable fixed point. By the definition of the intervals Ak and gk we
have that s(b) ∈ S1 \ ∆ and u(b) ∈ Int∆. Let W = {x ∈ S1 : limn→∞ fn(x) = s(b)} (i.e. W is
the basin of attraction of the stable fixed point).

Now, we will use the lifting F of the map f, and so we have to fix our notation. Without loss
of generality we may assume that 0 ∈ e−1(x2(b)). Then ∆ denotes the interval e−1(∆) ∩ [0, 1].
Also, U(b) (resp. X1(b)) denotes the only element of e−1(u(b)) ∩ ∆ (resp. e−1(x1(b)) ∩ ∆).
Lastly, we choose the lifting F such that F (U(b)) = U(b) + 1 (see Figure 3.1).

Also, we recall that if b ∈ gk then f(x1(b)) ∈ Int∆. The following lemma is not difficult to
prove (see Figure 3.2)

Lemma 3.1 The following statements hold.

(a) If F (X1(b)) > U(b) then, W = S1 \ {u(b)}.
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(b) If F (X1(b)) = U(b) then, W = S1 \ {u(b), x1(b)}.

Remark 3.2 We note that the situation described in the Lemma 3.1.(a) is similar to the case
when b ∈ Ak and persists in a small open interval contained in gk.

Lemma 3.3 If F (X1(b)) < U(b) then there are two points V (b), Q(b) such that 0 < Q(b) <
X1(b) < V (b) < U(b) and F (Q(b)) = F (V (b)) = U(b).

Proof. Observe that F (X1(b)) = infx∈[0,1] F (X). Since F |∆ is strictly increasing, u(b) is the only
fixed point in ∆ and F (U(b)) = U(b) + 1 we have F (1) > 2 (see Figure 3.1). Hence F (0) > 1.
By using the intermediate value theorem we find two points V (b) > X1(b) and Q(b) < X1(b)
such that F (V (b) = F (Q(b)) = U(b). Also, V (b) < U(b) because F |∆ is strictly increasing.

Let x, y ∈ S1. We denote by [x, y] (resp. (x, y)) the closed ( resp. open) arc from x to y
counterclockwise. We call it a closed (resp. open) interval of S1. Let q(b) = e(Q(b)), v(b) =
e(V (b)) and I = [q(b), u(b)] (see Figure 3.3). Clearly F ([V (b), U(b)] = [U(b), U(b) + 1]. Then
there is a unique point R(b) ∈ (V (b), U(b)) such that F (R(b)) = Q(b) + 1. Let r(b) = e(R(b)).
So f([r(b), u(b)]) = I.

Observe that S1 \ I is contained in W and let A0 denote the interval (v(b), r(b)). Then the
following lemma follows from the fact that f(A0) = S1 \ I and f(I \ A0) = I (see Figure 3.3).

Lemma 3.4 Let F (X1(b)) < U(b). Then, (S1 \ I) ∪ A0 is contained in W. Moreover, W ∩ I =
∪∞

i=0f
−i(A0).

We denote by WI the open set W ∩ I (in I).

Proposition 3.5 W is a open dense set in S1.

Proof. From Lemma 3.4 we have that WI is open. Then the proposition will follow by showing
that WI is dense in I \ x1(b). Suppose not. Then D = (I \ x1(b)) \ Cl(W ) is a countable union
of open intervals (in I). Number these intervals and let di be the length of the i − th one.
Then

∑∞
i=1 di ≤ 1 and each di is positive. So limi→∞ di = 0. Hence there is a i0 with the

property that di ≤ di0 for all i. By using that f(x1(b)) ∈ ∆ we have that if x ∈ (q(b), v(b)),
then f(x) ∈ (x1(b), u(b)). From (1.1) and (1.2) we obtain that (f2)′|D > k > 1. Now observe
that f2(D) ⊂ D and that f2 restricted to the i0 − th interval of D maps this interval to a
larger interval because (f2)′ > 1. But such an interval can not be in D. This is the required
contradiction.

Let
∑

= S1 \ W. Clearly,
∑

= I \ WI .

Corollary 3.6 The set
∑

is a closed totally disconnected invariant set.

Next we use symbolic dynamics to describe the behavior of f in
∑

. To do this we define
K1(b) = ∪∞

n=0f
−n(x1(b)).

Theorem 3.7 Let b ∈ gk such that F (X1(b)) < U(b). Then there is a sequence R1, . . . , Rm with
m = m(x1(b)) of closed pairwise disjoint intervals in I such that

(a)
∑

⊂ (∪m
i=1Ri)) ∪ {x1(b)}

(b) f |∑ \K1(b) is topologically conjugate to σ|∑
T

, a subshift of finite type.
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Figure 3.1: Figure 3.2:

Figure 3.3:

6



Corollary 3.8 Let x1(b) ∈ WI . Then there is a sequence R1, . . . , Rm with m = m(x1(b)) of
closed pairwise disjoint intervals in I such that

(a)
∑

⊂ (∪m
i=1Ri)

(b) f |∑ is topologically conjugate to σ|∑
T

, a subshift of finite type.

Proof. It follows from the fact that K1(b) ⊂ WI and, hence,
∑

∩K1(b) = ∅.

Proof of Theorem 3.7. First of all we construct the sequence R1, . . . , Rm. Let V be the connected
component of WI such that f(x1(b)) ∈ Cl(V ) and f((q(b), v(b)) ∩ V 6= ∅ and let V ′ = (y, z) be
such that f(y) = f(z) = supV (see Figure 3.4). Note that x1(b) ∈ V ′ and, if x1(b) ∈ WI , then
V ′ is a connected component of WI . Otherwise V ′ is x1(b) union two connected components
of WI . Clearly, there exists a non-negative integer l such that f l(V ) = A0 (recall that WI =
∪∞

i=0f
−i(A0). Observe that for all n such that 0 ≤ n ≤ l, fn(V ) is an open interval and the

endpoints of fn(V ) map onto the endpoints of fn+1(V ). Moreover, V ′∪V ∪f(V )∪, . . . ,∪f l(V ) ⊂
WI ∪ {x1(b)}.

The complement of V ′ ∪ V ∪ f(V )∪, . . . ,∪f l(V ) in I is union of a finite sequence of closed
pairwise disjoint intervals. Call them R1, . . . , Rm. Let R = ∪m

i=1Ri. Clearly,
∑

⊂ R ∪ {x1(b)}
and statement (a) is proved.

The map f is monotonic on each closed interval Ri and we have that f−1(R) ⊂ R. Moreover,
for all i, j the set Ri ∩ f−1(Rj) has at most one connected component. Define the m×m matrix
T = (ti,j) by ti,j = 1 if Ri ∩ f−1(Rj) 6= ∅ and ti,j = 0 if Ri ∩ f−1(Rj) = ∅. Let (

∑
T , σ) be the

subshift of finite type with transition matrix T (see Definition 2.3). Now, statement (b) follows
in the standard way.

Figure 3.4:

Proof of Theorem 1.2. From Case g it follows immediately statement (a) (see also Figure 1.1).
Let αk = inf{b ∈ Ak ∪gk : F (X1(b) = U(b)}. Since F (X1(b)) > U(b) for b ∈ Ak and u(b) ∈ Int∆
we have αk ∈ gk. From Lemma 3.1 it follows statement (b). Let βk = sup{b ∈ Ak ∪ gk :
F (X1(b)) = U(b)}. Clearly, αk ≤ βk. From Theorem 3.7 and Corollary 3.8 it follows statement
(c). If αk 6= βk, set Lk = {b ∈ (αk, βk] : F (X1(b)) ≥ U(b)}. Since F (X1(b)) − U(b) depends
continuously on b we have that Lk is closed in (αk, βk]. From statements (b) and (c) it follows
(d).
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