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ABSTRACT: This paper aims to define the flow front as a continuous curve, in particular a Bézier curve, to reduce
the inaccuracies generated by classical Finite Elements (FEM) in the flow front definition. The flow front is used in
LCM processes for optimization algorithms, on-line control systems, PPI index and in general for whatever design and
correction task. In these algorithms it is commonly used FEM simulation where the flow front is represented as a set of
discrete points. This fact introduces an inaccuracy with the real flow front, because is continuous. In addition, the shape
of the flow front obtained by FEM simulation differs in a great manner form the smooth shape of the real flow front.
This concept was solved in our previous research, [7], where, using a mathematical technique, a Bézier curve is deformed
and moved using velocity vectors. This technique is called Bézier Shape Deformation. This work improved the flow
front representation but also introduced inaccuracies. In particular, the area enclosed between two Bézier curves, the flow
front in different time instants, do not corresponds to the resins amount introduced in this range of time. To solve it, in
the present research it is guaranteed the mass conservation law. Hence, it is introduced the required enclosed area in the
mathematical technique to guarantee that not only velocity vectors has an influence in the Bézier curve deformation.
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1 INTRODUCTION. isogeometric analysis based on NURBS. The entire do-
main is defined as a NURBS surface where the simulation
is computed. It produces an accurate representation of the

flow front but with an inacceptable computational cost.

The Liquid Composite Molding is the process most used
in the production of aeronautic, naval industry, etc. This

kind of process uses a mould to manufacture some pieces.
After closing the mould is impregnated the preform (a
special fiber) by injecting resin. The geometric line be-
tween the dry and wet area of the preform is defined as the
flow front. It is a common tool to take decisions on-line
during the filling of the mould. Usually numerical tools
are used to simulate the flow front like Finite Elements
Methods. This method introduces inaccuracies because
the flow front is represented as a set of discrete points.
The shape of the flow front obtained by FEM simulation
differs in a great manner from the smooth shape of the real
flow front. Actually the flow front is a continuous curve.
In general, the relevance of a proper representation of the
domain was analyzed in other works like [1],[2],[3]. The
idea is represent it as a continuous curve. The parametric
curves are widely used for geometry description in CAGD
(Computer Aided Graphic Design) because its mathemat-
ical properties are interesting. This fact has induced new
numerical techniques to obtain a better representation of
the computational domain with parametric curves, for ex-
amples, Bézier, B-Splines, NURBS, etc. In [4] introduced
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To reduce it, in [5] is combined NURBS-Enhance Finite
Element Method (NEFEM) with Discontinuous Galerkin
Formulation, FEM. Only the mould contour is defined as
a NURBS curve and inside the domain reducing the com-
putational costs. This investigation improves the FE sim-
ulation results in the contour but not in the flow front be-
cause it is defined as a set of points like in FEM. In [6],
the mesh of the domain is obtained by Bézier triangles.
Although these works improve the FEM techniques, are
not focused in the proper flow front representation. In this
sense, a flow front must be a continuous curve that must
be moved by velocity vectors obtained in the FEM sim-
ulation using Darcy’s Law to maintain the computational
cost efficiency. This concept was developed in our pre-
vious research [7], where a Bézier curve was moved and
deformed by velocity vectors.



2 PREVIOUS WORK: BEZIER SHAPE
DEFORMATION. DEFINITIONS AND
PROPERTIES.

Definition 1 A Bézier curve of degree n can be repre-
sented as:

t)=> PBin(t),t €0,1] (1)
=0

where P; are control points such that P(0) = Py and

P(1) = P, B, ,,(t) is a Bernstein polynomial given by:

n!

Bin(t) =
Bézier curves have useful properties for represent a curve
with a physical sense, in particular, an important proper-
ties is how to modify its shape. The way to get it, is mod-
ify the control points. With this properties it is defined the
following operator:

Definition 2

n

Se(a(t) =Y (Pi+&)Bin(t),t€[0,1] (3

=0

This definition represent the Bézier curve modify.This
modification is made through velocity vectors. These ve-
locity vectors are obtained by Finite Element Methods,
joining the start point .S and the final point T (Target
Point). Another interesting properties is the easily way of
concatenate two Bézier curve. Is necessary concatenate
two or more Bézier curves to compute the real flow front
using Bézier curve of low order. The aim of Bézier Shape
Deformation (BSD) is to compute the vector €, it can
be obtained through a constrained optimization method
based on Lagrange Multipliers. The idea is to minimize
the energy used by the curve from o (t) to Sc(ax(t)), that
is,
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To solve this problem, it is proposed the concatenation
of multiple Bézier curves, k, of low order (second order,
because the Bézier curve must be injective to avoid the
loops). Then, the function to minimize is translated as:

k 1 n
> / e Bin(t))? dt (5)
j=170 =0

To maintain the derivative property of the curve is im-
posed to the constrained optimization method the deriva-
tive restrictions in the start and end point of the resulting
concatenated curve,

o/ (0) — 8¢ (e1(0)) = 0; @, (1) — Sz (e (1)) =0 (6)

And in the joined points of the concatenated curves,

Se(ai(1) = Se(a2(0)) =0 (7
Se(au (1) =8 (a2(0)) =0 ®)
Se(ag—2(1) — Se(ag—1(0)) =0 )
S (aur—2(1) = S¢(a—1(0)) =0 (10)

The Lagrange function can be defined as: L(g;, )

k
g l)Bz o
2l
FY NI~ Sefautt))+

+AZDS, (041 (1)) — Se(eu(0))]
A2, (1) (1) — SL(en(0))])
+As[ (0) — S (01 (0))]
+Asr1[og (1) — S (o (1))

Making zero a L and 2L 5> a linear system equations is ob-
tained like AX = b, where A is a square matrix, its di-
mension depends on the order of the matrix. The vector
X is the solution and with it the Bézier curve is modified.

(1)

3 OBJETIVE AND OUTLINE

The "Bézier Shape Deformation" improved the flow front
representation but also introduced inaccuracies. In par-
ticular, the area enclosed between two Béier curves in
different time instants do not corresponds to the resin’s
amount introduced in this range of time. To solve it, in
the present research it is guaranteed the mass conserva-
tion law. Hence, it is introduced the required enclosed
area in the mathematical technique to guarantee that not
only velocity vectors has an influence in the Bézier curve
deformation. At the end of the paper some examples are
shown.

The mathematical technique to develop this tool is the
same like in the "Bézier Shape Deformation", a con-
strained optimization method based on Lagrange multi-
pliers. Only a new constraint is added that guarantees an
equality between the area and the resin’s amount injected.

4 THEOREM OF GREEN-RIEMANN

Theorem 1 Let 5 : [a,b] — R"™ Jordan’s curve piece-
wise smooth. Let D a convex set bounded by (. [
is positively oriented. Let F = (M, N) vector field,
F:ACR? — R% F € CYA) such that D C A.
Then,

/de—i—Ndy—// a—N—a—]\;dA (12)

Corollary 2 A consequence of Green-Riemann Theorem
is used to compute the area of D as:

area(D)z// dA:/—yda: (13)
D B
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Figure 1: Area between two Bézier curves

This result, 2, is used to compute the area enclosed two
Bézier curves. In our paper, it is used to compute the area
between two flow front’s representation in different time
instants. This value is compared with the resin’s volume
injected in this time instant. See Figure 1.

Definition 3 Let F': A C R® — R" a continuous vec-
tor field and let 7y : [a, b] — R™ piecewise smooth curve.
The line integral along -y is defined as follow:

LF=LbF(7)-7’(t) dt (14)

5 BEZIER SHAPE DEFORMATION
WITH A PHYSICAL LAW

To develop this new technique a new constraint is added
in the Lagrangian function, see 11. The new Lagrangian
function will be:

L(e,A) = L(g, A) + X(area — amount) (15)

The area’s computation is done with the corollary, see
refarea. With this mathematical result is possible to calcu-
late the area with the boundary’s parametrization. In this
case, see Figure

reffig:area, the parametrization is known because the flow
front is a Bézier curve and the contour of the mold in this
previous research is considered as a straight line. In figure
reffig:area there are four curves, 31, 32, 33 and (4. The
first and the third one are a concatenated Bézier curves, its
parametrization is defined in

refeq:Bezier. The second and the fourth one are segments.
The parametrization of these segments are defined as fol-
lows:

B2 = (w2(t),y2(t)) = R2a+tR2R3 = Ry +t(R3 — Ry)
(16)

€1[0,1]
Bs = (x4(t),ya(t)) = Ry+tR4R; = Ry +t(R1 —Ry)

7)
te|0,1]
Applying the definition 3 the area of this zone is compute
as: (considering B(t) = (z(t),y(t)))

1
area(D)/ﬁydm/O F(B(t)-B(t)dt = (18)

—Z/ —ydm—Z/ —y;(t t)dt

The result of this area is a function with the control points
P;of the Bézier curves and another function with the per-
turbation vector ;. Making zero gg and aL is obtained
a no linear system, this is the dlfference between this
method and the Bézier Shape Deformation. The system
is F(X) = 0 and the solution is X = [g;, A]. The solution
is a better representation of the flow front.

6 EXAMPLES
7 CONCLUSIONS
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