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Introduction 

Biomedical studies are frequently conducted including in 

vivo (Latin for ‘within the living’) observations; this means 

Chronic kidney disease (CKD) has been increasing over the last years, with a rate between 0.49% to 0.87% new cases per year. Cur-
rently, the number of affected people is around 850 million worldwide. CKD is a slowly progressive disease that leads to irreversible 
loss of kidney function, end-stage kidney disease, and premature death. Therefore, CKD is considered a global health problem, and 
this sets the alarm for necessary efficient prediction, management, and disease prevention. At present, modern computer analysis, 
such as in silico medicine (ISM), denotes an emergent data science that offers interesting promise in the nephrology field. ISM offers 
reliable computer predictions to suggest optimal treatments in a case-specific manner. In addition, ISM offers the potential to gain a 
better understanding of the kidney physiology and/or pathophysiology of many complex diseases, together with a multiscale disease 
modeling. Similarly, -omics platforms (including genomics, transcriptomics, metabolomics, and proteomics), can generate biological 
data to obtain information on gene expression and regulation, protein turnover, and biological pathway connections in renal diseases. 
In this sense, the novel patient-centered approach in CKD research is built upon the combination of ISM analysis of human data, the 
use of in vitro models, and in vivo validation. Thus, one of the main objectives of CKD research is to manage the disease by the identi-
fication of new disease drivers, which could be prevented and monitored. This review explores the wide-ranging application of compu-
tational medicine and the application of -omics strategies in evaluating and managing kidney diseases. 
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data collection based on the direct study of living organ-

isms. When the usage of living organisms is not possible 

or available, a good alternative is the in vitro strategy, per-

formed inside artificial confinements, such as test tubes, 



culture dishes, or incubators. In this last case, the samples 

to study derive from living samples (i.e., cultivated cells, 

synthetic tissues or organs, heterologous systems, etc.). 

Both strategies are expensive, time-consuming, and re-

quire large spaces and high-technology equipment [1]. In 

addition, ethical issues occasionally make the performance 

of certain studies even more difficult or impossible.  

In the past decade, an extraordinary technological ad-

vance characterized the field of biomedical research: the 

birth of big data science. This new science responded to 

the demands of several research groups to manage multi-

factorial analyses and to the increasing use of the -omics 

platforms (including genomics, transcriptomic, metabolo-

mics, and proteomics) for the generation of biological data. 

The volume of data generated in -omics includes, among 

others, information on gene expression and regulation, 

protein turnover, and biological pathway connections. All 

those data require fine organization, cleaning, storage, and 

integration to be efficiently interpreted. The great value of 

these studies resides in that they can be easily shared be-

tween research groups and the information be integrated; 

in this way, the data collection evolves and can potentially 

respond to different scientific questions, just changing 

some of the variables or the way to analyze them. The field 

of data science has evolved rapidly ever since, and still, it 

is in constant acceleration, in parallel with the introduc-

tion of new informatics languages, like Python and R. The 

advancement of new informatics tools allows improving 

the organization of the huge volume of generated data, the 

organization in structures and levels, until the progression 

into models and predictions [2]. The big data science set is 

the base for the introduction and evolution of in silico sci-

ence [3,4]. 

The term “in silico” derives from ‘within the silicon,’ and 

it refers to the computer chips that are made on this mate-

rial. In a typical in silico analysis, the machine creates a vir-

tual environment where it is possible to organize, manage, 

visualize, reconfigure, and interpret the different variables, 

as well as derive predictions [5,6]. The great value of the in 

silico application in the medical field resides in enabling 

a multifactorial analysis, simultaneously involving phys-

iological, molecular, cellular, environmental, social, and 

physical processes, and providing subject-specific predic-

tions that would be substantially difficult or impossible to 

measure in vivo. The application of the in silico approach 

to medicine studies is also known as ‘computational med-

icine.’ Computational medicine enables strategies for the 

diagnosis, prognosis, management, prevention, and treat-

ment of diseases [7]. Noteworthy, computational analyses 

can bypass ethical permissions on many occasions since 

the data can be anonymous or even simulations (so, not 

collected in real human patients). In addition, data sharing 

between laboratory researchers and uploading to interna-

tional databases is frequent and beneficial. All the predic-

tions and modeling obtained by an in silico study can be 

scaled up to populations, recycled, and interrogated from 

different points of view and scenarios, allowing a dynamic 

adaptation of models and simulations in a relatively short 

time. 

The applications of in silico science have been explored 

in diverse medical areas and specialties, being nephrology 

and, particularly, chronic kidney disease (CKD), amongst 

them. CKD is the term used to describe the progressive 

damage and functionality loss of the kidney. In 2023, the 

International Society of Nephrology-Global Kidney Health 

Atlas (ISN-GKHA) reported that the number of affected 

people reached 850 million patients worldwide. CKD in-

cidence has been increasing over the last few years, with 

a rate ranging between 0.49% and 0.87% new cases per 

year [8–10]. Age and race seem not to discriminate in this 

disease incidence. Due to all these considerations, CKD is 

considered a global health problem, and this sets the alarm 

for a necessarily efficient prediction, management, and 

prevention of the disease [11]. 

In this regard, the novel patient-centered approach in 

CKD research is built upon the combination of in silico 

analysis of human data, the extensive use of in vitro mod-

els, and the in vivo validation. One of the main objectives 

of CKD research is to manage the disease by the identifica-

tion of new disease drivers, which may be prevented and 

monitored. In this review, we explore the wide-ranging 

application of computational medicine and the application 

of -omics strategies in evaluating and managing kidney dis-

eases. 

In silico-based medicine research 

The purpose of a computer in silico medicine (ISM) is 

to collect clinical data, generally coming from different 

healthcare points, organize and process them, as well as to 

2 www.krcp-ksn.org

Kidney Res Clin Pract [Epub ahead of print]



integrate the variables to create the most accurate picture 

of the medical question. The final output of an in silico 

medical study is to combine mathematical and computa-

tional data science to provide a clear visualization of the 

medical problem. This output can be further analyzed dy-

namically, always combining descriptive, predictive, and 

prescriptive analytics. 

A relevant objective for a computational model is also 

to create a faithful emulation of the medical case (i.e., pa-

tient/ pathology) that can be further analyzed under the 

view of dynamic connections between the different parts of 

the human body, by integrating these interactions into one 

physiological virtual unit (also defined as a ‘digital twin’). 

By contrast, when studied under clinical practice (in vivo 

or in vitro), it is hard to solve medical questions by consid-

ering the overall complexity of the patient. The organism is 

frequently analyzed in parts, as if short and specific ques-

tions, that hardly can be joined to obtain the general vision 

of the problem. 

The ISM works using different computational-based sys-

tems, including databases, artificial intelligence (AI), and 

machine learning (ML). In the database system, clinical 

data from patients and volunteers are assembled from dif-

ferent sources and stored in the form of electronic medical 

records (EMRs). The EMRs are subsequently uploaded into 

a server or a centralized database, to be available for future 

consultations by the healthcare staff. It aims to bypass the 

limitations of paper-based format recording where patient 

data are stored and put into file cabinets [12]. 

The core of AI is a complex intersection of algorithms 

and statistics methods, able to execute the functions of 

pattern-seeking and recognition, make predictions, and 

eventually, solve problems. AI can learn, recognize, and 

interpret human behavior, but unlike humankind, it lacks 

the creativity to imagine something that has never existed 

before. For this reason, the bottleneck of big data science, 

and in particular the ISM, is the accurate collection of clin-

ical data and the proper organization of those before any 

computational analysis. 

ML is a subset of AI that includes several kinds of learn-

ing machinery, as shown in Table 1 [13]. Thus, ML tech-

nology can be broadly divided into supervised learning, 

unsupervised learning, reinforcement learning, and deep 

learning according to different modeling needs. There are 

many areas of medicine to which ISM can be applied [14]. 

In the following section, we describe some of these appli-

cations, specifically in clinical trials. 

Current evidence of in silico models in kidney diseases 

Even though in silico models are well established in 

medicine, their use in nephrology is still underway [15]. 

Nevertheless, there are some interesting examples of ML 

applications for the prediction of acute kidney injury (AKI) 

and CKD, as well as to identify different structures from a 

kidney biopsy and drug-induced nephrotoxicity. 

Drug-induced nephrotoxicity is one of the challenges 

in clinical trials, not only because of the effect it has on 

patients, but also because it is detected in the final stages 

of drug development. In a recent study, using algorithms 

of ML, 87 out of 565 chemical structures with potential 

nephrotoxicity were identified from an online chemical da-

tabase [16]. Half of the 565 structures had a related neph-

rotoxic effect of 0.1%, as extracted from the SIDER (Side 

Effect Resource) database. The 87 structures, defined as 

structural alerts, were used as criteria to classify a drug as 

Table 1. Different types of machine learning (ML) approaches
Type Description
Supervised learning Using logistic regression, random forest, and support vector machine, it receives input and gives a desired out-

put value, a.k.a. supervised signal. It is commonly used in medical research.
Unsupervised learning Receiving an uncategorized input, the ML by itself categorizes the samples into different categories based on 

their characteristics. For instance, it can recognize and categorize renal histological samples into different cat-
egories based on their morphological differences.

Reinforcement learning The ML learns and applies its knowledge to the end when it will receive a reward. Reward learning strategies 
are used to teach ML and help it find the best outcomes in a pool of possibilities.

Deep learning Which involves finding complex patterns in big data like the pathologic, genetic, environmental, and physiologic 
connections between diseases in a patient with multiple pathological conditions.

Modified from Li et al. (Chin Med J [Engl] 2020;133:687–698) [13] according to the Creative Commons License.
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nephrotoxic. 

One of the major issues in nephrology is determining 

the progression of CKD and predicting AKI. A generalized 

prediction model for CKD would enable early detection 

of high-risk CKD patients, as well as help to identify suit-

able treatment targets. Regarding the progression of CKD, 

a recent review revealed that in all models, the predicted 

outcome was calculated based on the progression towards 

end-stage kidney disease (ESKD), over a given interval of 

time [17]. To provide a consensus about the different CKD 

progression models, Lim et al. [17] reviewed 33 articles, 

which mainly used Cox proportional hazards regression 

models, with only a small amount employing ML or un-

supervised models. The general conclusion was that the 

research in CKD progression based on models was very 

inconsistent and most of the predictions presented var-

ious limitations, concerning both data availability and 

methodology. The retrospective study by Jaimes Campos 

et al. [18] investigated the prediction of renal or cardiovas-

cular events using previously defined urinary peptidomic 

classifiers CKD273, HF2, and CAD160 in a cohort of 5,585 

individuals. They found a highly significant prediction of 

events, with an hazard ratios of 2.59, 1.71, and 4.12 for heart 

failure, coronary artery disease, and CKD, respectively. 

Therefore, they applied in silico treatment, implementing 

on each patient’s urinary profile changes to the classifi-

ers corresponding to exactly defined peptide abundance 

changes, following commonly used interventions. 

Comparing the work by Tomašev et al. [19], who used 

recurrent neural networks (RNN) as multiple risk-assess-

ment algorithms for the prediction of AKI at 48 hours, with 

the one by Koyner et al. [20], who used a Gradient Boosting 

Machine (GBM) model, is concluded that the RNN offer 

better predictions (area under the receiver operator char-

acteristic curve of 0.92 for RNN vs. 0.87 for GBM). However, 

both studies missed an external validation, as they were 

carried out within the same healthcare system. 

In silico models have also been tested to evaluate kidney 

biopsies and identify pathological tissues, as in glomeru-

lonephritis. New studies have shown that artificial neural 

networks (ANN) are the method of choice for computa-

tional pathology. ANNs can not only classify kidney mor-

phology but also predict the disease status [21]. Newer 

ANN models, such as convolutional neural networks, can 

both identify glomerular structures, as well as discriminate 

between non-glomerulus tissue and sclerosed tissue [13]. 

Although these AI techniques are not yet close to replacing 

pathologists, these advances will be able to assist clinicians 

in their decisions and, in the future, make a breakthrough 

in precision medicine. 

The five possible data sources in nephrology are patient 

registries and epidemiological studies, EMRs and admin-

istrative data, clinical trials, mobile health devices, and 

molecular data. Molecular data on genetics and biology 

find their applications in demonstrating the molecular 

complexity of multifactorial CKD and enabling individual-

ized detection of underlying causal variables and possible 

treatments of both common and rare kidney diseases [12]. 

One representative work, an example of this analysis 

in the field of nephrology, is the one presented by Li et al. 

[22] about the prediction of diabetic nephropathy (DN). 

DN is one of the most important causes of both CKD and 

ESKD based on system biology (the holistic field of study 

that assesses the molecular mechanisms in organisms on 

a molecular and system level by integrating computational 

and mathematical analysis with biomolecular disciplines) 

[23]. In the study [22], the Gene Expression Omnibus (GEO) 

dataset was used to make a transcriptomic analysis on 

available microarray datasets including 19 DN samples and 

50 controls as input data. These data were analyzed using a 

variety of bioinformatics tools to make predictions, such as 

protein-protein interaction, network creation, analyses of 

differentially expressed genes, gene ontology, and gene set 

enrichment analysis. A multitude of new target genes for 

DN was identified; some of them being potential markers 

to be used in prognostic or therapeutic options for DN. 

Cardiorenal syndrome (CRS) is another promising area 

in which ML techniques and system biology are integrated 

to provide good predictive results. CRS is a condition in 

which there is a primary dysfunction of either the kidney 

or the heart, leading to the deterioration of the other. The 

informatics models used by Ishrat et al. [24] were similar to 

those used by Li et al. [22]. The microRNA (miRNA) dataset 

was obtained from an external miRNA database and the 

literature was analyzed by R/GEO2R/miRNet/Cytoscape 

software. Five miRNAs were identified as significant key 

genes for CRS progression and as possible biomarkers for 

diagnosing this syndrome. 
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Big data science and omics strategy 

Molecular data consists mostly of -omics data, including 

genomics, transcriptomics, proteomics, and metabo-

lomics. The in silico multivariable analysis of big data 

obtained from -omics integration requires data normal-

ization. This step is extremely relevant to ensure an unbi-

ased hypothesis. Also, in this complementary integration 

of computational and experimental (clinic) techniques, 

both bottom-up and top-down approaches are crucial to 

assembling the data obtained from all levels of biological 

pathways and coordinating these with the physiological 

processes. Top-down strategies extract information from 

system-wide methods (metabolomics, proteomics, tran-

scriptomics) and analyze it using diverse network models 

to decipher molecular mechanisms and functional pat-

terns, allowing the prediction of phenotypic responses and, 

eventually, the identification of new signaling pathways 

[25]. On the contrary, bottom-up strategies do not start 

with data but with the details of a particular molecular 

network (from silicon-cell models) that is quantitatively 

studied to reconstruct predictive models applicable to drug 

design. In this regard, bottom-up strategies serve to the gap 

between molecules and physiology [23]. 

As previously described, molecular applications in CKD 

allow for the identification of risk factors and potential 

treatments [26]. Moreover, -omics data enable visualiza-

tion of the impact of genetic mutations, individual classi-

fication of kidney biopsy, and uremic molecules [27]. The 

biological interpretation of -omics patterns is possible and 

depends on data repositories, which must be exhaustively 

annotated in all the main characteristics of renal clinical 

diseases, such as renal function over time, linked with the 

progression rate of a CKD [28]. 

The output information obtained from genomics and 

transcriptomics ranks these two strategies in different ap-

proaches. As an example, transcriptome-based signature 

matching has been successfully used in the discovery of 

lysine deacetylase inhibition as a potential treatment op-

tion for the progression of CKD [29]. Additionally, it was 

discovered that even if immunosuppression treatment of 

nephrotic syndrome is unsuccessful, some mutations will 

permit treatment with a Q10 supplement [30]. Through 

GWAS (genome-wide association studies), it was possible 

to identify alterations associated with a higher risk of CKD. 

For instance, it was shown that 10% to 15% of the African 

American population have alterations in the gene APOL1. 

This gene is associated with more than a 10-fold risk for fo-

cal segmental glomerulosclerosis or hypertensive ESKD, in 

combination with other genetic or environmental factors, 

when two risk alleles are given [31]. The proteins TNFR1 

and 2, after this study, were associated with ESKD and are 

now considered biomarkers for the outcome of diabetes 

types 1 and 2. 

Again, the use of -omics, combined with systems biology, 

has been useful in the identification of JAK-STAT as a drug 

target in diabetic kidney disease (DKD). In this case, tran-

scriptomics of tissues from patients with DKD revealed in-

duction of JAK-STAT signaling [32]. A clinical trial was con-

ducted based on a cross-species transcriptome analysis of 

the JAK-STAT pathway with podocyte-specific overexpres-

sion of JAK2 in DKD. This trial showed a dose-dependent 

decrease in albuminuria after treatment with baricitinib 

(JAK1 and JAK2 inhibitor), indicating the potential benefit 

of this therapy in DKD patients [33]. 

The identification of prognostic markers for the differ-

entiation of disease courses in CKD patients was possible 

thanks to the integration of -omics data. In particular, the 

urinary epidermal growth factor (EGF) was identified as a 

predictive marker for CKD by the integration of kidney bi-

opsy transcriptome data, urinary proteome data, and clin-

ical data [34]. The urinary EGF protein correlates with the 

intrarenal EGF messenger RNA and with the eGFR slope as 

a measure of renal function, which is a criterion for disease 

progression. Furthermore, urinary EGF as a potential bio-

marker for the loss of renal function has been validated for 

different subtypes of CKD by other studies [35,36]. 

As an additional example, the metabolomic approach 

has improved our understanding of uremia [37]. Specifical-

ly, all retained molecules and their toxicity when the kidney 

fails have been identified. The correlation and quantifica-

tion of symptoms linked to retained metabolite toxicity was 

a challenge until then. For instance, kidney failure caused 

by uremic illness is affected either by environmental or ge-

netic traits. In this disease, there is a simultaneous impact 

of filtration, reabsorption, secretion, and metabolism, of 

toxic solutes, in both blood and urine [38,39]. The identifi-

cation of which of those solutes were toxic was extremely 

difficult to predict [40–43]. The Fig. 1 summarizes the cur-

rent ISM workflow and applications in nephrology.  

Checa-Ros, et al. In silico medicine in CKD
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Future opportunities in the nephrology field 

Due to the multitude of underlying pathophysiological 

mechanisms in kidney diseases, there are great challenges 

in their staging, treatment, and prognosis. Systems biology 

offers the potential to complement medical research by 

integrating multi-omics data, clinical phenotype data, and 

pathological data mapping, to identify CKD subtypes and 

disease determinants. As aforementioned, linking cellular 

function, alterations, and interaction may improve future 

classification, prognostic, and more specific novel molec-

ular therapies [29]. As CKD patients are at high risk for car-

diovascular disease and ESKD and have no effective treat-

ment to halt or reverse progression, future efforts need to 

focus on preventing and reversing the situation (treatment), 

and not merely on disease detection. The purpose of this 

final section is to describe and summarize those aspects in 

need of improvement. 

First, the integration of imaging and -omics data is re-

quired to correlate them with biomarkers. Equally import-

ant is the establishment of standardized sampling and 

imaging protocols to ensure the quality and improvement 

of the translation of two-dimensional sections to three-di-

mensional constructions [21]. In this case, AI can visualize 

Figure 1. Schematic workflow of in silico medicine in nephrology. At the initial stages, the input from EMRs and other healthcare 
sources of public datasets can provide much clinical information related to a specific medical problem or disease; in this particular 
case, information related to CKD/AKI or renal-related risk factors. Also, data from the -omics platform, once validated, serve to evaluate 
patients at risk. Then, the in silico medicine and deep machine learning workflow collects all clinical and analytical data, to integrate 
the variables to create the most accurate analysis of a specific kidney disease. The final output is to combine mathematical and com-
putational data science to provide a clear visualization of the medical problem. This output can be further analyzed dynamically, always 
combining descriptive, predictive, and prescriptive analytics to obtain an improvement for those patients affected.
AKI, acute kidney disease; CKD, chronic kidney disease; EMRs, electronic medical records.
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subtle differences not distinguishable by experts and assist 

in the identification and prediction of results. The noninva-

sive diagnosis offered by AI might substitute renal biopsy, 

in the future [13]. ML is well suited for diagnosis and treat-

ment using EMRs genomics and biomedical image analysis 

of renal pathology. The future key potential of ML lies in 

decision-making, as it has already been applied to the anal-

ysis of renal pathological images and diagnosis, including 

the prognosis of CKD and AKI. Concerning this, temporal 

medical history improves the prediction and identification 

of high-risk patients. Yet, CKD prediction models require 

more calibration and external validation to be incorpo-

rated into the guidelines [15,28]. ML has the potential to 

be widely used in the prescription, monitoring, diagnosis, 

and prediction of dialytic treatment in the future. However, 

at present, the use of ML in kidney diseases resides in its 

application at the initial stages of renal disease prediction, 

as fulfilling criteria for enough patients, eliminating demo-

graphic bias, or success in external validation [15]. 

Second, qualitative big data requires data standardiza-

tion through consensus, data curation to maintain quality, 

competition among the entities, patient privacy, com-

parability of results, and independence from industrial 

influence. Integration and interoperation of consolidated 

and exchangeable big data is a key feature for a future com-

prehensive approach [4]. Since the accuracy of a model de-

pends on reliable data reflection, improvement of funding 

for data collection and unified standardization for higher 

data quality is crucial. So far, data available are scattered, 

non-shared, and need mapping and pre-processing, to be 

used in a model. Furthermore, external validation of the 

model is rarely possible without enough data [13]. 

The third aspect refers to the identification of therapeutic 

targets. Omics has successfully discovered CKD disease 

biomarkers, but not clinically relevant therapeutic targets, 

indicating that systems biology predictive modeling re-

quires new bioinformatics solutions. In addition, differenti-

ation of tubular and glomerular physiology by -omics poses 

a challenge, since an abundance of molecules in the urine 

or blood can be caused by increased glomerular filtration 

barrier passage, lower tubular reabsorption, or damaged 

renal cells [27]. Future -omics approaches have to advance 

to combine single cell/ single nuclear profiles with spatial 

resolution, and small conditional RNA profile [29]. More-

over, mapping cellular interactions to disease phenotypes 

in molecular models is crucial in the future to seek targets 

with structural information [26]. 

Conclusions 

The ISM is an emergent data science that poses interest-

ing promise in the field of nephrology and offers reliable 

computer predictions to suggest optimal treatments, in a 

case-specific manner. In addition, ISM has the potential to 

acquire a better understanding of the kidney physiology 

and/or pathophysiology of many complex diseases, togeth-

er with a multiscale disease modeling. However, the use of 

this approach is limited by the low coverage of metabolo-

mics, as there are much fewer metabolites measured than 

genes and proteins. This ultimately hinders comprehensive 

mapping and the discovery of clear dysfunction correla-

tions. 

The prediction of renal function loss is complex since 

there are no suitable biomarkers available in routine diag-

nostics to enhance the predictive power of the already-es-

tablished markers, like proteinuria, albuminuria, and esti-

mated glomerular filtration rate. Systems biology, however, 

has been used to identify prognostic markers for the differ-

entiation of disease courses in CKD patients. 

Finally, a current and future issue that arises from in 

silico models is that they present some impairment in the 

translation of molecular simulations (sub-organelle level) 

to physiology-based models (organ-system level). It re-

mains hard to adapt mathematical theories to physiology 

and biology starting from such models. The challenge is 

to describe the dynamic behavior of a high-dimensional 

model through a lower level using a simplified dimensional 

model, even with the use of the most advanced technolo-

gy. Multiscale modeling can help to fix this issue, by fusing 

models at different levels. 
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