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Abstract: Cancer is a process involving cell mutation, increased proliferation, invasion, and metas-
tasis. Over the years, this condition has represented one of the most concerning health problems
worldwide due to its significant morbidity and mortality. At present, the incidence of cancer continues
to grow exponentially. Thus, it is imperative to open new avenues in cancer research to understand
the molecular changes driving DNA transformation, cell-to-cell interaction derangements, and im-
mune system surveillance decay. In this regard, evidence supports the relationship between chronic
inflammation and cancer. In light of this, a group of bioactive lipids derived from polyunsaturated
fatty acids (PUFAs) may have a position as novel anti-inflammatory molecules known as the spe-
cialized pro-resolving mediators (SPMs), a group of pro-resolutive inflammation agents that could
improve the anti-tumor immunity. These molecules have the potential role of chemopreventive
and therapeutic agents for various cancer types, and their effects have been documented in the
scientific literature. Thus, this review objective centers around understanding the effect of SPMs on
carcinogenesis and their potential therapeutic effect.

Keywords: cancer; carcinogenesis; chronic inflammation; specialized pro-resolving lipid mediators;
bioactive lipids; polyunsaturated fatty acids

1. Introduction

Cancer is one of the most devastating public health problems worldwide due to its sig-
nificant morbidity and mortality [1]. Although the risk of developing cancer has increased,
the mortality rates in a significant fraction of cancer types have decreased considerably in
the last two decades, partly by introducing new and more effective screening techniques,
leading to a higher tumor detection rates at early stages [2,3]. The other battlefield to control
this epidemic is to develop more effective, specific, and less toxic antineoplastic agents.
This movement has been a successful strategy that has paid off over the past three decades,
which have seen the emergence of several new agents termed targeted antineoplastics.
Monoclonal antibodies [4], tyrosine kinase inhibitors [5], mTOR inhibitors [6], retinoids [7],
immunomodulatory agents (IMiDs) [8], enzymes and CRISP-R technology [9], BRAF kinase
inhibitors [10], BCG vaccine [11], and phosphodiesterase-3 inhibitors [12], among others,
are examples of drugs that have changed the paradigm of traditional cancer management.

Cancer is the second leading cause of death globally, and despite the aforementioned
technological innovations, the cancer burden had risen to 18.1 million new cases and
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9.6 million deaths in 2018 [13]. Thus, according to the World Health Organization’s In-
ternational Agency for Research on Cancer Global Cancer Observatory (GLOBOCAN)
forecast, 27.5 million new cancer cases worldwide are expected in 2040 [3,14]. In this
context, demographic factors, such as population growth, aging, social behaviors, and
economic development, will drive these projections [15]. However, the Prospective Urban
Rural Epidemiology (PURE) study conducted on individuals 35–70 years of age from
21 countries worldwide has shifted our traditional view of cancer epidemiology, showing
that deaths from cancer are higher when compared with cardiovascular disease (CVD) in
high-income countries [16,17]. This study clearly shows a lower incidence of CVD deaths
than cancer deaths when a country’s gross income stratum is high. Overall, a combination
of screening, prevention, and successful treatment has resulted in a considerable increase
in cancer survivors in the last five decades.

It is well known that cancer occurs due to multifactorial causes, with a substantial
genetic component; however, nearly 25% of the origins of a variety of tumors are caused by
chronic tissue inflammation [18,19]. In this vein, recent research has revealed that certain
social, environmental, and lifestyle factors can promote chronic systemic inflammation
that, in turn, can lead to several diseases, such as CVD, diabetes mellitus, chronic kidney
disease, non-alcoholic fatty liver disease, autoimmune and neurodegenerative disorders,
and cancer [20,21]. In this context, inflammation was first connected with cancer in 1828 by
Jean Marjolin and later in 1833 by Caesar Hawkins, who described skin cancer lesions near
burn wounds years after the heat damage. In 1863, Virchow was the first to hypothesize
that cancer genesis relies on chronic inflammation via both irritation and injury-enhancing
cell proliferation [22,23].

Today, the causal relationship of inflammation and innate immunity to cancer is more
widely accepted; however, some of the molecular and cellular mechanisms mediating this
relationship remain unresolved, but recent data have expanded our knowledge about the
participation of inflammation as a critical component of tumor behavior. In this regard,
inflammatory cells within the tumor niche are necessary for proliferation, survival, and
migration enhancement. In addition, tumor cells can express some signaling molecules
from the innate immune system, such as chemokines, selectins, and their receptors for
invasion, migration, and metastasis, amplifying the process mentioned above. These
processes open new avenues by new anti-inflammatory approaches with direct anti-cancer
effects or even with the ability to interfere in normal-to-neoplastic cell transformation
within a highly inflammated niche. Therefore, it is still fundamental to study the close link
among these entities, where the transformation of damaged DNA, the changes in lipid
and protein metabolism, and the production of free radicals constitute critical processes of
carcinogenesis [24–26].

Therefore, cancer research has continued to look relentlessly for alternatives that can
improve these therapies and offer fewer toxic events [27,28]. This fact is precisely one of
the focal points of conventional cancer treatment, which involves considerable adverse
effects despite having favorable results. Hence, with the emergence of molecular lipidomics,
four novel lipid families have been recently discovered: Resolvins (Rvs), Maresins (MaRs),
Protectins (PDs), and Lipoxins (LXs), belonging to a large group of molecules known as
The Specialized Pro-resolving Lipid Mediators (SPMs) [29–31]. These compounds have been
well-characterized since their identification as potent modulators of the immune response
and for their effects on inflammation resolution. Furthermore, they have a potential effect
on anti-tumor immunity [32,33]. For this reason, the objective of this review centers around
the understanding of SPMs effects on carcinogenesis and their potential therapeutic effect.

2. Specialized Pro-Resolving Lipid Mediators: An Overview
2.1. Origin, Biosynthesis, and Classification

For decades, immunopathology has faced the challenge of elucidating the mecha-
nisms of associating chronic disorders with inflammation. Within the pleiad of molecular
pathways, mediators, receptors, and metabolites, the resolution of inflammation has been
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a well-recognized process where complex signaling downregulates the immune cascade
once the noxious stimulus is eliminated by both innate and adaptative immune responses
and, as a result, the recovering of tissue homeostasis occurs [34]. Upon this premise,
Serhan et al. [35] were the first to identify lipid metabolism products involved in this pro-
cess by describing a family of bioactive compounds later coined SPMs (Figure 1), a group
of molecules derived from omega-6 polyunsaturated fatty acids (ω-6 PUFAs) metabolism,
such as arachidonic acid (AA; 20:4n − 6), and omega-3 polyunsaturated fatty acids (ω-3
PUFAs), such as eicosapentaenoic acid (EPA; 20:5n − 3) and docosahexaenoic acid (DHA;
22:6n − 3) via COX/LOX pathway [36].
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Figure 1. Biosynthesis of SPMs and their actions in inflammation. (A) LX are generated from AA via
5, 12, 15-LOX, resulting in LXA4 and LXB4, whose receptor is ALX/FPR2. DHA, via COX-2/Aspirin
as well as via 15-LOX, produces 17-HpDHA, which can be metabolized into PD1 or NPD1 and is
synthesized in the nervous system or into 17-HDHA, generating RvD1-6 via 5-LOX, with activity on
ALX or GPR32. Another DHA pathway is through 12-LOX, where MaR1-2 and MCTRs are produced.
Finally, the biosynthesis of RvE1-3 derives from EPA, by the enzymes COX-2/Aspirin or CYP450,
being their receptor CMKLR1. (B). SPMs in inflammation: the inflammatory microenvironment
starts with PMN migration. Afterward, the change of pro-inflammatory LMs into pro-resolving
ones occurs with the initial synthesis of LXs. PMN infiltration increases, and SPMs act at this point,
reducing this influx. Moreover, the efferocytosis by MØ is stimulated and improved by Rvs, MaRs,
and LXs. Adaptive immunity, stimulated by SPMs, participates during the final phase of resolution.
However, whenever there is an exaggerated and chronic inflammatory response, it leads to chronic
inflammation, inhibited by Rvs, and LXs. Abbreviations: SPMs: specialized pro-resolving mediator;
AA: Arachidonic acid; LXs: Lipoxins; LOX: lipoxygenase; LXA4: lipoxin A4; LXB4: lipoxin B4; ALX:
G protein-coupled lipoxin A4 receptor; formyl peptide receptor; DHA: docosahexaenoic acid; COX-
2/Aspirin: Aspirin acetylates cyclooxygenase-2; 17-HpDHA: 17-hydroperoxyDHA; PD1: Protectin 1;
NPD1: neuroprotectin 1; 17-HDHA: 17-hydroxy-DHA; Rvs: D1-6-series resolvins; GPR32: G protein-
coupled receptor; MaRs1-2: Maresins 1-2; MCTR: maresin conjugates in tissue regeneration; RvE1-3:
E1-3-series resolvins; EPA: Eicosapentaenoic acid; CYP450: cytochrome P450; CMKLR1: chemokine-
like receptor 1; PMN: polymorphonuclear neutrophil; LM: lipid mediators; and MØ: macrophages.
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SPMs belongs to G protein-coupled receptors ligands [37], and their critical role
in regulating inflammation resolution has been widely documented, establishing that
excessive or uncontrolled inflammation is tightly linked to a disbalance in their synthesis.
Therefore, it is vital to understand every SPMs family’s role in the framework of acute and
chronic inflammation [38].

2.2. Resolvins

Rvs are unique molecules synthesized from DHA and EPA by polymorphonuclear
leukocytes (PMN) and macrophages during the resolution of inflammation to counter-
regulate pro-inflammatory activity and promote efferocytosis [39]. In this regard, five
resolvins families have been identified to date: the resolvin Ds (RvDs) 22-carbon DHA
metabolites; the resolvin Es (RvEs) 20-carbon EPA metabolites; the resolvin Dn-6DPA
(RvDsn-6DPA), a group of metabolites derived from the Osbond acid; the resolvin Dn-
3DPA (RvDn-3DPA) that come from clupanodonic acid metabolism; and the resolvin Ts
(RvTs), a clupanodonic acid metabolite [40].

RvDs are poly-hydroxyl metabolites of DHA, and to date, six RvDs (RvsD1-6), which
vary in the number, position, and chirality of their hydroxyl residues and the position and
cis-trans isomerism of their six double bonds, have been described [40]. Thus far, these
variants have been identified in PMN and macrophages inflammatory exudates with a
variety of allylic–epoxide intermediaries containing RvD1-2 at the start of the resolution,
and later, RvD3-4 [41]. Furthermore, to carry out their functions, RvDs are ligands of G
protein-coupled receptors (GPCR), such as ALX/FPR2, GPR18, GPR32, TRPA1, and the
TRPV1 receptor [39].

On the other hand, EPA-derived E-series Rvs (RvE) includes four primary bioactive me-
diators (RvE1, RvE2, RvE3, and18-HEPE), synthesized by 5-LOX and 15-LOX in PMN and
macrophages. These molecules exert their functions by Chem23, BLT1, and TRPV1 receptor-
binding [42]. It has been reported that RvE1 regulates leukocyte adhesion molecules
expression, ADP-dependent platelet activation, and PMN apoptosis stimulation [43]. In
addition, RvE1, along with RvE2, increases IL-10 synthesis and phagocytosis [44]. More-
over, it is relevant to highlight the properties of RvE3 in the decrease in PMN and 18-HEPE
production. These properties have been associated with a cardioprotective function in
several studies since RvE1 protected against reperfusion injury in this open-chest rat model
of ischemia–reperfusion [45] and protects against doxorubicin-induced cardiotoxicity by in-
hibiting oxidative stress, autophagy, and apoptosis by targeting AKT/mTOR signaling [46].

13-series Rvs (RvT) are also derived from ω-3 PUFAs, from docosapentaenoic acid
(DPA), and synthesized by COX-2 during the resolution of acute inflammation. This family
includes four mediators, RvT1, RvT2, RvT3, and RvT4 [24]. In this vein, Dalli et al. [47]
described the anti-inflammatory role of RvsT1-4 in mice endothelial cells and neutrophil co-
cultures during E. coli infection, demonstrating a protective response through the regulation
of inflammation. Other important resolvins are the RvDsn-6DPA, a metabolite of the osbond
acids, and resolvin Dn-3DPA (RvDn-3DPA), a clupanodonic acid metabolite. On the other
hand, AT-RvDs are synthesized by non-native COX-2 (drug-modified cyclooxygenase 2) to
form 17 (R)-hydroxyl residue named aspirin-triggered RvDs (AT-RvDs).

2.3. Lipoxins

LXs, synthesized in platelets and leukocytes from AA, are another group of bioactive
lipids capable of carrying out a wide variety of functions. These include regulating the
synthesis of pro-inflammatory cytokines, inhibiting angiogenesis, and reprogramming
M2 macrophages by binding to ALX/FPR2 and GPR32 receptors [48]. Their variants,
LXA4 derived from AA and aspirin-triggered LXA4 (ATL), are generated by 15-LOX.
These compounds have protective anti-inflammatory actions on various physiologic and
pathophysiologic processes as endogenous lipids acting in the resolution phase upon an
inflammatory response [49], playing an essential role in the tumor microenvironment (TME)
and cancer pathogenesis in several neoplasms, such as pancreatic, liver and colon cancer,
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melanoma, leukemia, and Kaposi’s sarcoma [50]. The healing role of these molecules has
been widely demonstrated in preclinical studies. For instance, Madi et al. [51] evaluated
LXA4 administration to mice with gastric ulcers, resulting in a significant histopathologic
and immunohistochemical improvement in the gastric mucosa.

2.4. Maresins

MaRs, also called macrophage mediators in resolving inflammation, are an SPMs
family synthesized from DHA by the 12-LOX enzyme. These have functions related to
phagocytes, such as the inhibition of neutrophil recruitment and macrophage efferocytosis
stimulation [52]. Moreover, they can negatively regulate the synthesis of pro-inflammatory
cytokines, such as IL-1β, IL-6, and TNF-α, to induce the resolution of inflammation and
tissue regeneration [53]. The members of this family are maresin 1 (MaR1), maresin 2
(MaR2), and maresin conjugates in tissue regeneration (MCTR1-3). These compounds are
synthesized by macrophages via lipooxygenation at the carbon-14 position with molecular
oxygen insertion. Finally, MaRs action is achieved through BLT1 and TRPV1 receptors
binding [54].

2.5. Protectins

The last group of SPMs are PDs, which, just like MaRs and RvD, are biosynthesized
from DHA by the action of 15-LOX during the resolution of inflammation [55]. Protectin D1
(PD1) is the first and best-studied member of this family. This compound is synthesized by
various cells, including leukocytes, such as PMN, eosinophils, and macrophages [56]. PD1
is also known as neuroprotectin D1 (NPD1) when synthesized in neural systems, and it has
a protective action in the brain, retina, and in pain modulation [57]. Like other SPM family
members, NPD1 exerts potent anti-inflammatory and anti-apoptotic/neuroprotective bio-
logical activities [58,59]. NPD1 actions in the central nervous system (CNS) are mediated
by its interaction with the parkin-associated endothelin-like receptor (Pael-R), also known
as GPR37, widely expressed in glial cells, such as astrocytes and oligodendrocytes [59].

Other neuroprotective structurally related agents exhibiting similar activity are PDX
(10R, 17S-dihydroxy-4Z, 7Z, 11E, 13Z, 15E, 19Z-DHA); 20-hydroxy-PD1 (10R, 17S, 20-
trihydroxy-4Z, 7Z, 11E, 13E, 15Z, 19Z-DHA); and 10-epi-PD1 (10R, 17S-Dihydroxy-4Z, 7Z,
11E, 13E, 15Z, 19Z-DHA) [60,61]. The beneficial effect of these anti-inflammatory mediators
was reported by Sheets et al. [62], who demonstrated both a laser-induced choroidal neuro-
vascularisation attenuation and microglia cells elongating in mouse eyes treated with NPD1.
In addition, evidence in aged-mice models indicates that NPD1 is able to diminish post-
operative delirium (POD). Post-surgical administration of NPD1 decreased IL-6 and TNF-α
expression systemically as well as in the hippocampus and pre-frontal cortex; moreover,
this SPM maintains the integrity of the blood–brain barrier (BBB) and induces macrophages
polarization into an M2 phenotype, limiting neuroinflammation and cognitive decay [63].

3. From Inflammation to Cancer: A Key Topic in Carcinogenesis

Inflammation is a response to an acute process that possesses a therapeutic nature
since it is a defensive mechanism against both external (e.g., bacteria and viruses) and
internal agents (e.g., damaged cells and toxic compounds) [64,65]. Nevertheless, when
it extends in time, it can become detrimental. Chronic inflammation is associated with
various pathological entities, such as diabetes [66] and rheumatoid arthritis [67]. In fact,
the existence of previous inflammatory diseases has shown an increased incidence risk
for certain cancers. For instance, it has been reported that the incidence of colorectal can-
cer (CRC) is 4–10 times greater in individuals with ulcerative colitis (UC) in comparison
with those without the inflammatory bowel disease [68]. Similarly, statistically significant
evidence shows an association between prostate and ovarian cancer incidence, with the
presence of previous inflammatory processes, such as prostatitis [69] and pelvic inflamma-
tory disease [70], respectively.



Int. J. Mol. Sci. 2023, 24, 12623 6 of 23

Hence, chronic inflammation has proven to be a key phenomenon in cancer develop-
ment (Figure 2) since it is closely related to the processes of cellular metaplasia and tumor
promotion, survival, proliferation, invasion, and angiogenesis [71]. Chronic inflammation
is characterized by inflammatory cell infiltration, such as macrophages, lymphocytes, and
plasmatic cells, which together release cytokines (TNF-α, IL-6, TGF-β, and IL-10), growth
factors, and enzymes, contributing to tissue damage and repair [72]. However, these me-
diators’ chronic actions have been associated with tumor initiation and progression [73].
Thus, to connect inflammation with cancer, typically two pathways are described; an in-
trinsic pathway depends essentially on oncogene activation and tumor suppressor gene
silencing (tumor-promoting role). The other extreme is the extrinsic pathway, which is the
inflammation resulting from infections or other inflammatory processes that precede cancer
development (tumor-initiating role) [74].
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Figure 2. Implications of chronic inflammation in cancer development. (1) In situations such as per-
sistent infections, an immune response is triggered, and this leads to the release of pro-inflammatory
cytokines, such as TNF-α, IL-6, and IL-8, inducing the chemotaxis of immune cells and the production
of free radicals. When the inflammatory process becomes chronic, the reactive oxygen and nitrogen
species are capable of damaging DNA. TNF-α activates the NF-KB pathway, generating free radicals
and a Th1 response with certain anti-tumor properties. However, the activation of the STAT-3 path-
way by IL-6 counteracts this effect, generating a Th2 response and inducing the production of IL-10.
(2) The STAT-3 pathway stimulates neovascularization via the production of VEGF, as well as through
the stimulation of the expansion of Th17 and Treg lymphocytes. These lymphocytes contribute to
tumor growth and neovascularization via IL-17 and inhibit the mechanisms of anti-tumoral immunity.
The Th2 response generates IL-10, pushing macrophages towards the M2 phenotype known for
their pro-tumoral properties, such as the release of substances that favor tumor growth and survival.
(3) At this point, tumor growth is stimulated by pro-inflammatory cytokines in the environment.
Angiogenesis continues at the expense of VEGF, and cytokines, such as IL-10 and TGF-B, contribute
to the processes of immune evasion, generating a state of tumor-induced immunosuppression. Ab-
breviations: TNF-α: tumor necrosis factor Alpha; IL-6: Interleukin 6; IL-8: Interleukin 8; IL-10:
Interleukin 10; IL-17: Interleukin 17; NF-κB: Nuclear factor kappa B; STAT3: Signal transducer and
activator of transcription 3; Treg: Regulatory T Cell; VEGF: Vascular endothelial growth factor; TGF-β:
Transforming growth factor beta; and MMP-2: matrix metalloproteinase-2.
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On the other hand, an inflammatory environment is prone to produce large amounts
of reactive oxygen species (ROS) and reactive nitrogen species (RNS), a group of molecules
collectively called RONS, produced by the inducible nitric oxide synthase (iNOS) and
NADHP oxidase, resulting in phagocytic cell activation. Moreover, pro-inflammatory
cytokines induce RONS production in non-phagocytic cells in the inflamed niche [75–77].
Multiple mechanisms have been proposed to explain the RONS and cancer association.
The best-studied molecular damage mechanism by ROS and RONS is related to the high
reactivity of these molecules against lipids, proteins, and DNA. Thus, when guanine
reacts with ROS, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxoDG) originates, a metabolite
prone to cause G:C transversion (G→T transversion) to T:A [78,79]. On the other hand,
when 8-oxoDG reacts with ONOO−, 8-nitrodeoxyguanosine generates, causing a similar
transversion [80,81].

Other critical pathways are STAT3 and NF-κB activation triggered by IL-6 and TNF-α,
respectively, indispensable for perpetuating inflammation. NF-κB leads to pro-inflammatory
cytokines, chemokines, RONS, and adhesion molecules induction [82] and the activation
of cellular proliferation and differentiation pathways, which drives to pro-tumorigenic
activity increase [83]. Additionally, it has been associated with therapy resistance, based
on reports that persistent activation of the NF-κB pathway is associated with a worse
prognosis [84]. Interestingly and controversially, it also holds anti-tumoral properties that
lay on the expression of Th1 cytokines, such as IL-12 and IFN-γ [85–87]. However, STAT3
overshadowed these anti-tumoral effects, limiting this response by inducing a Th2 response
with the release of IL-10, pushing macrophages into the M2 phenotype [88]. Additionally,
it contributes to the expansion and development of Treg and Th17 cells, which are linked
with tumor growth due to their ability to dissipate anti-tumoral immunity, enhancing
both the tumor’s survival and its metastasis capacity [89,90]. In addition, STAT3 pathway
activation is tightly related to tumor neovascularization via vascular endothelial growth
factor (VEGF) upregulation [91]. Some studies suggest that IL-17 has a vital role in this
pathway activation, potentiating the angiogenic effect [92]. Therefore, STAT3 is not only a
pro-tumoral agent but also intervenes as an anti-tumoral response inhibitor [93].

During the first steps in neoplasia development, nutrient scarcity forces tumor cells to
balance between apoptosis and cellular growth. This pre-angiogenic or “avascular” stage
restricts growth and dissemination, reaffirming the angiogenesis importance [94] since
when angiogenesis occurs, rapid tumor growth occurs, leading to poorly irrigated regions
with a consequent hypoxic and acidic milieu [95], a fact having a profound impact by the
VEGF release stimulated by a lower pH and, thus, enhancing angiogenesis [96]. On the
other hand, low oxygen concentration stimulates hypoxia-inducible factor production (HIF),
another group of angiogenic peptides involved in metabolic reprogramming, invasion,
metastasis, and treatment resistance [97]. In summary, aside from stimulating tumor
growth and preservation, angiogenesis is also an indispensable factor in tumor invasion
and dissemination due to the wide vascular surface available for malignant cells to penetrate
without mentioning the increased vascular permeability [98].

From the immunological perspective, immune evasion is a hallmark of cancer [99].
This characteristic is the result of multiple dysregulation phenomena induced by the previ-
ously mentioned tumor microenvironment. This situation is known as “tumor-induced
immunosuppression”, characterized by an environment where pro-tumor immune media-
tors are hierarchized over anti-tumor ones: a Th2 inflammatory response dominance, M2
macrophages, Treg cells, a low capability for antigen presentation and cytotoxicity, and
cytokines, such as TGF-β, IL-6, IL-8, IL-10, and VEGF [100].

Furthermore, mentioning AA derivatives is a sine qua non condition when discussing
inflammation, since many studies suggest that patients who regularly take non-steroidal
anti-inflammatory drugs (NSAIDs) have a lower risk of developing a wide range of neo-
plastic diseases and a lower risk of metastasis [101–103]. This affirmation makes more
sense after knowing that PGE2 is the most abundant prostanoid found in several malignant
lesions and that its pro-inflammatory nature contributes to tumor growth [104]. Therefore,
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interfering with this chain of events is considered one of the new lines of therapy against
cancer [105–107].

Finally, it is worth mentioning that not all malignancies possess the same immunologi-
cal behavior. Recent advances have suggested new methods to classify tumors according
to the distribution and to quantity of lymphocytes CD3 and CD8, as well as the expression
levels of B7-H1/PD-L1 [108]. Consequently, tumors can be divided into “hot”, “interme-
diate” (including immunosuppressed and isolated), and “cold”. On the one hand, “hot
tumors” are highly infiltrated tumors with abundant anti-tumoral cells and positive re-
sponses to conventional therapies; on the other hand, “cold tumors” not only do not lack
anti-tumoral cells, but are also rich in immunoevasive molecules and, therefore, associated
with a worse prognosis. Additionally, other immune coordination profiles have been
described for those patterns that do not correspond to the previously explained “hot” vs.
“cold” classification. In this regard, the “excluded” and “immunosuppressed” phenotypes
were accepted: the first one, to describe tumors with T-cells on the edge of tumoral sites
or “invasive margins”—unable to infiltrate the parenchyma; the second corresponds to
malignancies with low levels of immune infiltration without any physical barrier, suggest-
ing the existence of an immunosuppressive environment within the tumor that hampers
anti-tumoral functions [109,110]. This novel classification, or immunoscore, that allows
the characterization of tumors beyond their expansion has been highly validated around
the world not only for its greater prognostic value but for the new possibilities that arise
with regard to anti-tumoral therapies based on immunology, such as T-CAR cells, immune
checkpoint inhibitors, or oncolytic viruses. These are examples of techniques that could be
enhanced and personalized according not only to the TNM classification but also to the
immunoscore, type of cancer, and many other variables, leading to a new era in cancer
therapeutics [111].

4. Anti-Tumoral Mechanisms of SPMs: An Approach to Inflammatory Responses

With better comprehension of the pathways that connect inflammation with cancer, the
robust role of SPMs in the resolution of inflammation supposes a modulating mechanism
in the transition to cancer. Therefore, the focus of their participation in this process has
been widened in recent times, being acknowledged now that these bioactive lipids, via mul-
timodal mechanisms, are capable of influencing diverse aspects of neoplastic development.
These range from direct actions on malignant cells to the modification of functions and
behaviors of multiple components in the TME (Figure 3), which also influence pro-tumor
phenomena that are essential for the evolution of cancer. Hence, it is necessary to approach
these potential mechanisms individually [34,37,112].

4.1. SPMs and the Resolution of Inflammation

Through the collected evidence, it has been established that, for a proper resolution of
inflammation, it is indispensable to inhibit the migration and activation of neutrophils to-
ward the site of inflammation. SPMs have this mechanism of action in common, enhancing
this phase [113]. At the same time, neutrophil degranulation contributes to the spread of
the inflammatory response, which is why LXs exert their effect by inhibiting them [114].
It must also be taken into account that the resolution of inflammation greatly depends
on the efferocytosis of apoptotic neutrophils and dead cells during the initial phase of
inflammation. This is a prerequisite for effective phagocytosis [115]. Here is where Rvs and
LXs come into action by promoting this mechanism effectively and favoring chemotaxis
and the adhesion of non-inflammatory monocytes. They stimulate the phenotype switch of
pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype. This effect
is further potentiated by MaRs that regenerate cells and tissues, particularly in certain
organs, such as the heart [116,117]. Moreover, beyond its regenerative actions on various
tissues, it has been reported that RvD1 exerts powerful suppressing effects over tumoral
proliferation through the modulation of classic monocytes transmigration via increased
MCP-1 expression in a human papillomavirus (HPV)-positive cancer cell model [118].
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SPMs display multimodal mechanisms of action over malignant neoplasms. On one hand, the
binding of molecules, such as LXA4 and RvD1 to the FPRL1 receptor, can result in a decrease in
angiogenic phenomena via VEGF inhibition (1 and 3). On the other hand, the interaction between
LXA4 and macrophages may restore their anti-tumoral actions via their transition from the M1
towards the M2 phenotype (2). Similarly, RvD2 increases characteristics such as phagocytosis,
infiltration, proliferation, and survival of M2, as well as simultaneous reduction of pro-inflammatory
cytokines, such as MPC1, IL-6, TNF, and CXCL10, in several types of immune cells located in
the TME (4). Additionally, LXA4 can exert inhibitory effects over pro-tumoral cells, such as Breg
lymphocytes (5), and stimulant effects on anti-tumoral immune cells, such as Tregs and neutrophils,
potentiating their antineoplastic activity (6) or increasing the levels of chemotaxis towards the tumor
(7). Finally, both LXA4 and RvD1 directly lead to the decrease of essential pro-tumoral processes,
such as invasion, metastasis, and EMT, by interacting with receptors located on the surface of cancer
cells (8). Abbreviations: RvD2: Resolvin D2; RvD1: Resolvin D1; SPMs: Specialized Pro-Resolving
Mediators; TNF-α: Tumor necrosis factor alpha; IL-6: Interleukin 6; MPC1: Mitochondrial Pyruvate
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Factor; FT3: Transcription Factor 3; ERK: Extracellular Signal-regulated Kinase; Breg cells: Regulatory
B cells; FPRL1: Formyl Peptide Receptor-like 1; FPR2: Formyl Peptide Receptor 2; EMT: Epithelial
Mesenchymal Transition; TGF-B1: Transforming Growth Factor Beta 1; COMP: Cartilage Oligomeric
Matrix Protein; and FOXM1: Forkhead Box Protein M1.
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Moreover, it is important to add that all SPMs protect from the oxidative stress gen-
erated by pathogens and immune cells, not only by reducing ROS and RONS but also
by stimulating the expression of antioxidant defenses, such as Superoxide Dismutase
(SOD), Hemo-1 Oxidase (HO-1), and Nrf2, which protect against inflammation, liver toxi-
city, and even cancer [119,120]. Additionally, SPMs can intervene in adaptive immunity,
with the recruitment of T CD4+ and CD8+ cells [121] capable of reducing the synthesis of
pro-inflammatory cytokines and preventing the differentiation of T CD4+ cells into the
TH1 and TH17 subsets, which are related to many diseases, via the regulation of tran-
scription factors, without being immunosuppressive [122]. This fact was confirmed by
Chiurchiu et al. [123], who found that DHA-deficient mice had high levels of these cells,
and as a result, the supplementation with RvD1, RvD2, and MaR1 significantly reduced the
synthesis of pro-inflammatory cytokines due to the stimulation of T cells, thus regulating
chronic inflammation. While RvD1 and RvE1 influence the humoral immune response
by increasing the synthesis of IgM and IgG on active B cells, they reduce the production
of IgE [124]. Studies show that RvD1 expedites allergen clearance in mice models with
allergic respiratory diseases, while RvE1 improves the lymphatic clearance of phagocytes
and blocks platelet aggregation and activation [57,124].

It is important to point out that a considerable part of the inflammatory response is
a result of the activation of transcription pathways, which allow its perpetuation. This is
the reason why LXs can regulate several levels of transcription factors, such as NF-κB, in
a joint action with MaRs. In addition, they control the expression of several genes linked
to inflammation and inhibit the Activator protein 1 (AP-1), nerve-growth-factor-inducible
protein A (NGFI-A), and the peroxisome-proliferator-activated receptor γ (PPARs) [112,125].
On the other hand, the actions of NPD1 are involved mainly in neuroinflammation. This
is why Bazan et al. [62,126] pointed out that they are modulators of stress pathways that
relate to cell death and the increase of cell survival.

Particular approaches have described beneficial SPM effects over tumor-promoting in-
flammation. These hypotheses have been sustained by the existence of tumoral progression-
modulating mechanisms that exert an inflammation-promoting effect over leucocytes via
apoptotic cellular debris produced as a consequence of chemotherapy [127,128]. In this
context, Sulciner et al. [27] presented the inhibiting effects of RvD1, RvD2, and RvE2 on tu-
moral progression stimulated by cellular debris. Additionally, they reduced inflammatory
responses as a result of the suppression of chemokynes and cytokines, such as TNF-α, IL-6,
IL-8, CCL4, and CCL5.

4.2. SPMs and the Resolution of Tumoral Angiogenesis

It has been reported that SPMs exert an anti-tumoral effect via the inhibition of un-
controlled angiogenesis. This fact is supported by several experimental models; however,
the mechanisms by which these mediators offer their anti-angiogenic activity have not
been completely elucidated [129]. LXA4, by binding to its receptor (ALXR), can reduce
the phosphorylation of the VEGF receptor (VEGFR) and reduce the synthesis of angio-
genic mediators, such as VEGF-C. It can also attenuate the production of inflammatory
mediators, such as PGE2, LTB4, IL-6, and IL-8, in malignant cells extracted from a human
Kaposi sarcoma tumor [130]. In another underlying mechanism, LXA4 is also capable of
diminishing the angiogenic process by lowering the synthesis of HIF-1α and, as a result,
significatively reducing tumor growth [131].

For their part, RvD1 and LXB4 also generate a decrease in the expression of mRNA of
pro-angiogenic factors and a reduction in VEGF-A release via a mechanism that involves
STAT-3 signaling in gastric cancer cell lines. It has also been found that this antiangiogenic
effect may be mediated by the activity of the formyl peptide receptor 1 (FPR1), which is a
pattern recognition receptor (PRR), after seeing that the pharmacological suppression of this
receptor increased the tumoral pro-angiogenic activity and diminished the activity of SPMs,
their receptors, and the enzymatic components associated with their production [132]. In
addition, an anti-angiogenic effect has been described for RvE1 after finding that, just like
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RvD1 and the ATL analog, it decreased corneal neovascularization. RvE1 exerted this effect
by binding to ChemR21, which is widely expressed in this tissue. However, there is still
not enough evidence of the potential effect of RvE1 in tumoral angiogenesis [133,134].

4.3. SPMs and Tumoral Immunomodulation

Even though the immune system is considered the natural defense of the body, tumoral
cells have effective abilities not only at the time of evading immune responses but also in
manipulating cell behavior and redirecting it to favor tumor progression. This way, they
convert the immune elements inside the TME into allies responsible for maintaining chronic
inflammation and ensuring neoplastic development [135–137]. In this context, the role of
SPMs in the re-establishment of physiological anti-tumoral functions in immune cells that
reside in the TME has been recently discovered to stop the evolution of cancer [32].

Firstly, studies have shown the effects these molecules have on leukocytes, such as neu-
trophils and PMN, by inhibiting key actions for the preservation of chronic inflammation,
such as chemotaxis, migration, epithelial interactions, and the release of pro-inflammatory
cytokines from these cells. In addition, they inhibit the synthesis of toxic substances, such as
free radicals, which are capable of damaging nucleic acids, causing genomic instability, and,
with this, potentially oncogenic mutations. They also promote their anti-tumoral activities
by stimulating phagocytosis in PMN and cytotoxic actions in neutrophils [138,139].

Furthermore, the immunomodulatory effects of SPMs extend to other immune cells
and, in particular, to macrophages and their precursors. Studies have shown the inhibiting
role of the ATL-1 analog in the proliferation of monocytes to reduce the number of potential
tumor-associated macrophages (TAMs) and, in this way, decrease the tumoral progression
and increase the survival rates in patients [140]. However, similar trials performed in vivo
using LXA4 show opposite results and report increases in monocyte levels, their chemo-
taxis, subsequent differentiation to M2, and preservation of the anti-tumoral phenotype,
preventing the “switch” toward tumor-associated macrophages or M1 [141–143]. Even
beyond maintaining physiologic activities in cells, a potentiation in phagocytic actions
has been observed. This is induced by the administration of Rvs, as well as the blocking
of apoptosis through mechanisms, such as the activation of the PI3K/Akt pathway. This
causes the expression of the Bc12 anti-apoptotic protein, the disruption of the caspase
pathway due to the absence of pro-apoptotic stimuli or signals, and the preservation of
mitochondrial integrity to decrease the generation of ROS. Overall, these effects indicate a
positive impact of these lipids, both in the reduction of malignant phenotypes as well as in
the preservation and optimization of anti-tumoral activities [24,27,144].

Lastly, preclinical studies carried out in mice have highlighted the existing relationship
between the effects caused by LXA4 and RvD1 in B, T, and NK cells. On the one hand, RvD1
is responsible for maintaining cytotoxic actions in NK cells according to what was proven
in vitro, where pancreatic cancer cells were used. Similarly, researchers have listed the
promoting effects of LXA4 in lymphocytic cells with altered phenotypes, especially on Treg
lymphocytes in the early stages of cancer [145,146]. Contrary to the effect exerted on Tregs,
there has been confirmation of suppressive effects of LXA4 on regulatory B lymphocytes
(Bregs), which synthesize IL-10, due to the role these have on the promotion of tumoral
development because of the negative regulation over other immune cells that they carry out.
Therefore, the inhibition of Bregs via mechanisms, such as dephosphorylation of STAT3
and ERK factors by LXA4, results in a decrease in tumoral growth [49].

4.4. SPMs and Precancerous Lesions

In the continuous study of carcinogenesis, the changes provided by the inflammatory
microenvironment in organs at risk must be mentioned [71]. This substantially contributes
to the development of preclinical pathological changes that constitute predisposing factors
for the development of an invasive lesion, whose detection is one of the cornerstones in the
secondary prevention of neoplasms [147]. In this sense, SPMs offer a protection mechanism
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to minimize the tissue damage observed in chronic inflammatory disorders and, therefore,
decrease the neoplastic transformation [148].

One of the phenomena involved in this event is the epithelial–mesenchymal transition
(EMT), described as the differentiation process of epithelial cells towards an undifferentiated
or mesenchymal phenotype [149]. It is associated with local tumor invasion, metastasis,
premalignancy processes, and fibrosis [150]. In the EMT, there is a loss of the normal cellular
structure due to a decrease in the expression of certain factors, such as E-cadherin, and an
increase in the expression of vimentin. These have both been postulated as predictors of
tumoral behavior and markers for the early detection of some neoplasms [151,152].

Researchers have tried to demonstrate the potential impact of SPMs on this process.
In a study by Zong et al. [153], it was reported that LXA4 was capable of reverting EMT
after binding to FPRL1. It was used as a treatment in a model with pancreatic cell lines,
also evidencing that LXA4 influenced this process via the suppression of TGF-β1 signaling.
This resulted in a decrease in local invasion and metastasis. Analogously, this fact has
been explored with RvD1, depicting the important role of this mediator in EMT prevention.
This was witnessed in co-cultures of hepatocellular carcinoma cells and cancer-associated
fibroblasts (CAF), where RvD1 binds to its FPR2 receptor and can repress CAF-mediated
EMT in liver cells through the decrease in FOXM1 and COMP expression, subsequently
decreasing cellular invasion [154,155].

On the other hand, another precancerous disorder that has been linked with these
bioactive lipids is inflammatory bowel disease (IBD), which has been recognized as an
important risk factor for the development of CRC and colitis-associated cancer (CAC) [156].
SPMs have a role as preventive agents in this setting, after describing their effect on the res-
olution of inflammation in the intestinal mucosa in experimental models [157,158]. Several
studies have demonstrated that RvE1 and MaR1 have a modulator effect on the inflamma-
tory response in mice models with dextran sulfate sodium (DSS) and 2,4,6-trinitrobenzene
sulfonic acid (TNBS)-induced colitis. This evidenced a decrease in the synthesis of several
inflammatory mediators, such as IL-1β, TNF-m, IL-6, and IFN-γ, and in the case of MaR1,
a decrease in neutrophil recruitment and ROS production was observed. This lowering
effect on colon inflammation mediated by both compounds is dependent on the inhibition
of NF-κB signaling [159,160]. NF-κB inhibition is also considered a regulating mechanism
of progression to CRC since its increased activity promotes the aberrant production of
chemokines and tumorigenic proteins responsible for the inhibition of apoptosis and an
increase in cellular survival, as previously described [161].

In another order of ideas, researchers have studied the preventive effect of SPMs
from the perspective of their synthesis. They have demonstrated that the suppression
of 15-LOX-1, which is an important enzymatic regulator of the production of these lipid
mediators, increased the incidence of CAC via a mechanism that involves the IL-6/STAT3
pathway. This established the association between the regulation of the activity of SPMs
and the development of CAC [162,163].

In the context of hepatic lesions, RvD1 and RvE1 have a protective effect by relieving
the liver injury caused by concanavalin A (ConA) in animal models. Pretreatment with
RvD1 and RvE1 in C57BL/6 mice in whom liver damage with ConA was induced had a
decrease in the production of TNF-α, IFN-γ, IL-2, IL-1β, and IL-6, as well as an inhibition of
T CD4+ and CD8+ lymphocyte infiltration via a mechanism dependent on the inhibition of
NF-κB and AP-1. This established the protective role of RvD1 and RvE1 in the progression
from hepatitis to liver cancer [164]. The effect has also been attributed to PD1 and MaR1
since these are capable of reducing ConA-induced liver injury and, thus, attenuate the
progression of the disease by inhibiting the CX3CL1/CXRCR1 axis and decreasing ROS
production, respectively, via a mechanism also dependent on NF-κB [165,166].

Finally, it has been reported that prolonged exposure to ultraviolet rays (UVR) is an
important carcinogenic factor by causing disturbances in the antioxidant mechanism of the
skin and by triggering morphological changes in it [167]. A recent study exposes the protec-
tive effect of MaR1 by promoting the resolution of inflammation and reducing the oxidative
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stress caused by UVR. The administration of MaR1 reduced cutaneous edema and neu-
trophil recruitment, inhibited keratinocyte apoptosis, and decreased epidermal thickening
and collagen degradation in the skin of hairless mice exposed to UVB radiation [168].

5. Beneficial of Supplementation withω-3 PUFAs in Cancer: Clinical Evidence

In understanding the expanding role of the products of lipid metabolism over the
regulation of the inflammatory process and, as a result, on the development of cancer, the
modulation of the profile of activity of these mediators represents a therapeutic alternative
to study [169,170]. Therefore, in the last few years, supplementation with foods rich in
ω-3 PUFAS, such as fish oil, has gained a lot of interest after demonstrating that these
lowered the incidence of cancer in several experimental models [171–173]. On the basis
of this premise, researchers have documented a wide variety of observational studies to
demonstrate the role of EPA and DHA as therapeutic and chemopreventive agents for the
development of cancer and tumoral progression (Table 1) [174,175].

To this end, it is necessary to highlight clinical trials that have sought to explore this
fact, in the individual context of each cancer. One has been CCR, for which studies have
endeavored to explore the role of ω-3 PUFAs as chemopreventive agents or adjuvant
therapy to improve its survival [43]. A study published by Cockbain et al. [176] evaluated
the role ofω-3 PUFAs on patients with metastatic CCR before undergoing liver resection
surgery. This phase III clinical trial reported that 18 months after surgical resection, the
supplementation with EPA-FFA increased the general survival rate (SR), when compared
with controls, due to its antiangiogenic properties. Similarly, the CALGB 89803 study
retrospectively studied the relationship between consumption of marine-derived ω-3
PUFAs and survival in patients with completely resected stage III CCR. It showed that this
supplementation increased the rate of disease-free survival (DFS), revealing that patients
who consumed dark fish at least one day a week had a 35% lower risk of recurrence of
death by cancer [177].

On the other hand, a multicentric study (The seAFOod Polyp Prevention Trial) evalu-
ated the potential effect of treatment with EPA and aspirin, on their own or in combination,
for the prevention of CCR. To achieve this, four groups were assigned; two of them received
individually 2 g/day of EPA (as FFA or TAG) or 300 mg/day of aspirin. Another group
received both simultaneously, and the last group was administered a placebo for 12 months.
After the follow-up colonoscopy, results showed that the supplementation with EPA and
aspirin did not reduce the ratio of individuals with one or more colorectal adenomas.
However, it was established that both confer certain chemoprevention against adenoma,
so this must be evaluated in the future with precision medicine [178]. Moreover, results
are expected from the OMICC study (NCT03661047), which seeks to evaluate the effect
of ω-3 PUFAs in the treatment with AMR101 (VASCEPA, icosapent ethyl) in the tumor
microenvironment and gut microbiota in patients diagnosed with colon cancer.

Within the context of prostate cancer, there is a lot of evidence regarding the regulator
effect ofω-3 PUFAs on this disease [179]. A clinical trial performed by Aronson et al. [180]
explored the role of the low-fat fish oil (LFFO) diet with a reduction in the ratio of ω-6
toω-3 in individuals subjected to radical prostatectomy. The participants consumed five
capsules of fish oil (1.1 g each) per day during the study. It was evidenced that the LFFO
diet did not provide statistically significant changes in the profile of biomarkers, such
as IGF-1. However, secondary results showed in the Ki67 immunostaining a reduction
in the proliferation of malignant tissue of 32.2% (p < 0.05). This proved the inhibitory
effect of the LFFO diet in carcinogenesis and prostate cancer progression. Later, a study
derived from this trial assessed the effect of this diet on the profile of serum eicosanoids.
There was a decrease in the profile of 15 (S)-HETE and the cell cycle progression score
(CCP) with the LFFO diet. The 15 (S)-HETE/LTB4 pathway was highlighted as a potential
target in the proliferation of this type of cancer [181]. Currently, results are expected from
a phase IIb trial that is evaluating the effect of supplementation with MAG-EPA over
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cellular proliferation, inflammation, and quality of life in patients with prostate cancer and
a Gleason score ≥ 7 who are about to undergo a radical prostatectomy [182].

Another cancer that has been studied for the effects of PUFAs both in the therapeutic
and preventive field is breast cancer [183]. Within the evidence, a small clinical trial
stands out, where they explored the effect of supplementation with 2 g/day of fish oil
over the nutritional and immunological parameters of patients with breast cancer without
treatment, with previous chemotherapy. These results showed that supplementation led
to an increase in serum levels of EPA (p = 0.004) and DHA (p = 0.007), also evidencing
the preservation of serum levels of high-sensitivity C-reactive protein (hsCRP) and T
CD4+ lymphocytes, showing signs of a modulator effect of ω-3 PUFAs on the immune
response and inflammation of these patients [184]. In addition, the potential of DHA as
neoadjuvant therapy in metastatic breast cancer has been reported. It improves the result
of chemotherapy by increasing the tumor’s sensitivity to the treatment and, as a result,
survival [185].

Based on this potential, a clinical trial was performed on 48 patients with locally
advanced breast cancer. The intervention consisted of the administration of ω-3 PUFAs
supplements (1 g/d) or placebo, along with the administration of three cycles of neoad-
juvant chemotherapy with cyclophosphamide-doxorubicin-5′fluorouracil (CAF). It was
then demonstrated that the supplementation significantly improved the general survival of
patients when compared with controls. Moreover, there was a decrease in the expression of
Ki67 (p = 0.032) and VEGF (p = 0.041), exposing the benefits of supplementation withω-3
PUFAs in neoadjuvant chemotherapy for this type of cancer. Nevertheless, other variables
must be explored further, such as the optimal dose, bioavailability, and circulating levels in
future investigations [186]. On the other hand, results are expected from the DHA-WIN
(NCT03831178) study, which has the objective of evaluating the potential therapeutic index
(efficacy: adverse effects) of supplementation with 4.4 g/d of DHA in combination with
neoadjuvant chemotherapy in patients with early breast cancer, using the Ki67 index as a
marker for efficacy as well as the effect of DHA over serum phospholipids and the immune
system [187]. Lastly, it is essential to mention that, even though there is an ample bibliog-
raphy on the beneficial role ofω-3 PUFAs and cancer development, these results are not
conclusive and must be interpreted with caution, as there are also studies showing a weak
association betweenω-3 PUFA supplementation and cancer suppression in certain types of
cancer [188].

Table 1. Summary of clinical evidence for the treatment of EPA and DHA in different types of cancer.

Type of
Cancer Methodology Intervention Relevant Results Ref.

Colorectal
cancer

Phase III, randomized,
double-blind, placebo-controlled

study in 88 patients with
CRCLM before undergoing liver

resection surgery

Dietary supplementation with
2 g/day of EPA-FFA during the
preoperative period compared

with placebo.

The daily consumption of
EPA-FFA increased the OS rate
in patients 18 months after the

surgical intervention. There
were no differences in Ki67 PI,

but the antiangiogenic activity of
EPA-FFA was proven in vitro

[176]

Retrospective study on 1011
patients with stage III colon

adenocarcinoma, without
metastasis, prior chemotherapy,

or radiotherapy.

Marine-derivedω-3 PUFAs
ingestion (g/d) was calculated
by multiplying the portion of

each article, the frequency, and
the sum of all the articles.

People who consumed dark fish
≥1 d/week obtained a higher

DFS rate than those who did not
(HR 0.65; CI of 95%, 0.48 to 0.87;

p = 0.007).

[177]

Multicentric, randomized,
double-blind, placebo-controlled,

two-by-two factorial study in
709 patients with sporadic CRC

diagnosed with colonoscopy

The 4 study groups received:
(1) 2 g/day of EPA-FFA or

EPA-TAG; (2) 300 mg/day of
aspirin; (3) Aspirin and EPA; or

(4) Placebo

Supplementation with EPA and
aspirin did not decrease the

percentage of individuals with
one or more colorectal

adenomas. There is a need for
more evidence with
precision medicine.

[178]
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Table 1. Cont.

Type of
Cancer Methodology Intervention Relevant Results Ref.

Prostate
cancer

Phase II randomized study on 48
patients with localized prostate

cancer, who were about to
undergo radical prostatectomy.
LFFO assessed for 4/6 weeks.

Subjects were assigned to 2
groups: (1) WD and a 15:1

proportion ofω-6:ω-3 PUFAs or
(2) LFFO diet with a 2:1

proportion ofω-6:ω-3 PUFAs.
5 cap/day

The LFFO diet did not provide
changes in biomarkers, such as
IGF-1. However, the activity of

Ki67 was reduced by 32.2%,
demonstrating an effect on

cell proliferation.

[180]

Post hoc analysis that used
serum and prostate tissue

samples obtained in a previously
completed randomized

clinical trial.

The levels of LBT4 and 15
(S)-HETE were assessed, as well
as CCP score. FA was measured

with GC and ELISA.

Levels ofω-6 PUFAs and 15
(S)-HETE were significantly

decreased in comparison with
controls. 15 (S)-HETE was

correlated with Ki67 (p < 0.01).
CCP score was significantly

lower in individuals with the
LFFO diet than those with WD.

[181]

Breast
cancer

Randomized, double-blind,
clinical trial that evaluated the

effect ofω-3 PUFAs over
immune parameters in 45
patients with breast cancer

without chemotherapy.

Provided 2 g (470 mg of EPA and
390 mg of DHA) of fish oil

concentrate each day
(2 caps/day) at lunch and dinner

time for 30 days.

Supplementation withω-3
PUFAs resulted in a significant
increase in EPA (p = 0.004) and
DHA (p = 0.007) plasma levels.

The level of hsCRP and the
percentage of CD4+ lymphocytes

were maintained when
compared with controls.

[184]

Randomized, double-blind,
placebo-controlled clinical trial

in 48 patients with locally
advanced breast cancer treated

with neoadjuvant CAF.

Administered 1 g ofω-3 PUFAs
each day, along with 3 cycles of

neoadjuvant chemotherapy with
CAF for 51 days.

A significant decrease was
observed in the expression of

Ki67 and VEGF when compared
with controls. In addition, OS

and DFS rates were significantly
higher: p = 0.048 and p = 0.044

[186]

Abbreviations: CRCLM: Colorectal cancer with liver metastasis; ω-3 PUFAs: omega-3 Polyunsaturated fatty
acids; EPA: Eicosapentaenoic Acid; DHA: Docosahexaenoic Acid; EPA-FFA: Eicosapentaenoic Acid-Free Fatty
Acid; OS: Overall survival; DFS: Disease-Free Survival; hsCRP: high sensitivity C-reactive protein; 15 (S)-HETE:
15-Hydroxyeicosatetraenoic acid; CCP: cell cycle progression; WD: Western diet; LFFO: Low-fat fish oil; CRC:
Colorectal cancer. CAF: Cyclophosphamide, Doxorubicin, 5-Fluorouracil; and GC: Gas chromatography.

6. Conclusions

Ever since the identification of the hallmarks of cancer, the study of inflammation has
gained great relevance. A considerable number of studies have highlighted the important
role of inflammation as a promotor of carcinogenesis, an event where the activation of
innate and adaptive immunity allows the pivotal participation of diverse types of cells and
pro-inflammatory mediators that stimulate each of the stages of tumorigenesis [20,189].
This is accompanied by the elucidation of the protective actions of SPMs, the lipidic me-
diators that can regulate and suppress the activity of inflammatory agents, neoplastic
transformation inductors, and tumoral progression. As a result, SPMs are now an attrac-
tive therapeutic target to consider in the journey of improving conventional therapy and
decreasing adverse effects.

In this sense, multiple experimental studies have explored the beneficial role of SPMs
inω-3 PUFAs supplementation as a coadjuvant alternative in cancer therapy. As a result,
diminished inflammation and risk of metastasis has been observed, as well as improved
survival rates in patients, independent of the cancer type. However, despite substantial
evidence obtained in the past years, the results remain controversial; thus, more information
regarding this topic is required before introducing these supplements as a therapeutical
coadjuvant and chemopreventive option in various types of cancer.
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