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A B S T R A C T   

The progressive emergence of antimicrobial resistance has become a global health problem in need of rapid 
solution. Research into new antimicrobial drugs is imperative. Drug repositioning, together with computational 
mathematical prediction models, could be a fast and efficient method of searching for new antibiotics. The aim of 
this study was to identify compounds with potential antimicrobial capacity against Escherichia coli from US Food 
and Drug Administration-approved drugs, and the similarity between known drug targets and E. coli proteins 
using a topological structure-activity data analysis model. This model has been shown to identify molecules with 
known antibiotic capacity, such as carbapenems and cephalosporins, as well as new molecules that could act as 
antimicrobials. Topological similarities were also found between E. coli proteins and proteins from different 
bacterial species such as Mycobacterium tuberculosis, Pseudomonas aeruginosa and Salmonella Typhimurium, which 
could imply that the selected molecules have a broader spectrum than expected. These molecules include 
antitumor drugs, antihistamines, lipid-lowering agents, hypoglycemic agents, antidepressants, nucleotides, and 
nucleosides, among others. The results presented in this study prove the ability of computational mathematical 
prediction models to predict molecules with potential antimicrobial capacity and/or possible new pharmaco-
logical targets of interest in the design of new antibiotics and in the better understanding of antimicrobial 
resistance.   

1. Introduction 

Currently, antimicrobial resistance (AMR) is one of the ten main 
threats for the public health worldwide [1]. According to the World 
Health Organization (WHO), this health problem could cause up to 10 
million deaths yearly by 2050, surpassing other death causes such as 
cancer, cardiovascular diseases, or traffic accidents [2]. A study carried 
out by Murray et al. states that the global burden associated to 
drug-resistant infections in 2019 was of 4.95 million deaths of which 
1.27 million were directly attributable to AMR [3]. In Europe, this 
burden is associated to 541,000 deaths, of which 133,000 were directly 
related to antibiotic resistance [4]. On an economic level, the World 
Bank calculates that, by 2050, up to 3.8% of gross domestic product 
could be lost due to AMR [5]. These data show that there is a great need 
to invest in R&D to search of new antimicrobial agents. In May 2015, the 

68th session of the World Health Assembly adopted a worldwide action 
plan to support the urgent need to reinforce the knowledge and empiric 
basis of AMR via research to tackle this issue [6]. 

Several interesting initiatives focused on the search of alternative 
therapies to antibiotics have appeared recently [7]. Examples include 
antimicrobial peptides (AMP), phagotherapy, and antivirulence ther-
apy. However, these strategies are not capable of completely replacing 
traditional antimicrobial therapies, which would remain as adjuvants in 
infection treatment [8–10]. This is due to drawbacks, such as disad-
vantages in treatment efficacy and security, a lack of studies of mech-
anism of action, or high production costs [11,12]. 

Since the beginning of the 20th century, the pharmaceutical industry 
has been involved in the search for and discovery of new drugs with 
activity against bacterial infections [13]. The design of lead compounds 
and computational design were techniques that contributed to reach the 
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so-called Golden Age of antibiotics [14]. Unfortunately, AMR appears 
and progresses as soon as an antibiotic is released to market, which has 
resulted in a decrease in the interest of the pharmaceutical industry in 
investing in the R&D of these treatments [13]. Most of the antibiotics 
currently used to treat bacterial infections were discovered more than 30 
years ago and the “new” antibiotics are usually based on previously 
known molecules or pre-existing antimicrobial agents [15]. 

The WHO established four criteria for antibiotic innovation, which 
include (1) new target, (2) new mechanism of action, (3) new family, 
and (4) absence of known cross resistance [16,17]. Of the 11 new an-
tibiotics approved by the US Food and Drug Administration (FDA) and 
the European Medicines Agency (EMA), only two meet at least one of the 
four criteria. Being aware that a number of approved antibiotics are not 
good options for the treatment of deep infections or those caused by 
extremely resistant Gram-negative microorganisms, it is still imperative 
to promote the research to increase the available antimicrobial arsenal 
[18]. Therefore, the objective of this study is the identification of 
compounds with potential antimicrobial capacity from drugs already 
approved by the FDA through the application of a model based on to-
pological data analysis (TDA). This model has been called 
structure-activity topological data analysis (SA-TDA). SA-TDA is defined 
as a submodel of TDA capable of identifying, from protein and drug 
databases, molecules with the potential to present a specific pharma-
cological activity. 

2. Background 

The de novo development of new antimicrobials is a slow process due 
to the progressive increase of unsatisfactory clinical data, such as 
pharmacokinetic parameters, bad stability and permeability, or lack of 
activity in vivo [19]. Historical data show that the success rate of a drug 
in clinical development is low and that only one fifth of the molecules 
studied are approved for stage 1 clinical trials [20]. These difficulties 
have a direct economic effect, as releasing a drug to market costs be-
tween 200 and 300 million dollars in a process that takes between 13 
and 15 years. More specifically, an antibiotic can take up to 20 years in 
development and cost between 568 and 700 million dollars [21,22]. 
Additionally, among the antibiotics in development belonging to exist-
ing families, only 1 in 15 will be approved and reach patients. In the case 
of new antibacterial families, only 1 in 30 is successful [23]. This is 
mainly because the development of new antimicrobials is intrinsically 
limited by the design of the process. To slow down and control the 
appearance of antibiotic resistance, new drugs should have their use 
limited to extreme cases. While securing the efficacy of antibiotics 
contributes to combat antibiotic resistance, it also hinders the recovery 
of the outlay of the pharmaceutical companies that invest in the R&D of 
said drugs [24]. This, in turn, decreases the interest of the industry in 
these drugs as it struggles to find a return on investment. The decrease in 
benefits along with the efficacy problems of antimicrobials and the 
increasing development of AMR has led many pharmaceutical com-
panies to abandon their antibiotic research lines or to bankruptcy. 
Consequently, all the innovation relies on small research institutes and 
universities [25]. 

In this context, drug repurposing appears a useful method to accel-
erate the search of new antimicrobial agents as it is based on the idea of 
finding new clinical opportunities for already existing drugs [26]. As 
these molecules have already been tested for their pharmacokinetic, 
toxicological, and pharmacological properties, development phases can 
be accelerated considerably. This translates in savings in time, costs, and 
risks when compared to developing a new drug de novo [27]. Among the 
candidates for drug repurposing are molecules that failed at one stage or 
another in the process of developing a drug for a different disease and 
the successful repurposing of these would allow the recovery of part of 
the money originally invested in their development [21]. This meth-
odology offers an opportunity to accelerate the discovery of molecules 
with antimicrobial activity and to improve our knowledge of the 

mechanisms of bacterial resistance through the identification of phar-
macological targets that have yet to be identified or studied. 

Mathematical computational prediction models constitute another 
important tool in the discovery of new drugs, capable of characterizing 
structural biomolecular properties, physical properties, and chemical 
properties. In the current era of Big Data, where biomedical data is 
practically infinite, these models have become key in the success of 
machine learning (ML) for the design and repurposing of drugs [28]. 
One of the emerging techniques in the search of new antimicrobial drugs 
is TDA. This encompasses a series of visualization, exploration, and data 
analysis tools based on topology, a branch of mathematics that studies 
abstract notions of form and continuity [29]. It can be said that two 
objects are topologically equivalent if one can be transformed into the 
other through twisting and stretching, but not tearing, cutting, or gluing. 
The ability to process and analyze molecular data presented by a TDA 
model allows the exploration of proteins characteristics, including their 
3D structure, flexibility, compressibility, and folding. This could accel-
erate drug repurposing by allowing the comparison of bacterial proteins 
to existing protein drug targets for already known drugs so that, if the 
similarity between the two proteins is very high, the drugs have a higher 
probability of interacting with bacterial proteins [30,31]. These new 
interactions could provide information on new drug targets and new 
antibacterial molecules. TDA models have the unique ability to 
concisely summarize structures in a way that often detects features that 
other methods overlook [29]. It is also capable of reducing structures to 
essential topological relations. In addition, topological properties do not 
depend on any choice of coordinate system and are not affected by 
continuous reshaping such as scaling or translation. This avoids certain 
problems related to noise and reproducibility: if two databases collect 
the same information about a protein structure, the representation of 
this information may differ slightly even if the data describes the same 
object (it can be rotated, moved, or viewed from a different angle as if it 
were another) [32]. These types of changes are not a problem for this 
model because it is not based on a coordinate system. 

An important feature of this method is that it uses persistent ho-
mology (PH) for the comparison of bacterial proteins of interest and 
known target proteins of approved drugs. PH uses theoretical abstract 
algebra tools to detect topologically shared features in the proteins to be 
compared [32]. This method is useful for generating a topological 
fingerprint for each of the proteins to be studied. This fingerprint in-
corporates the identification or classification of proteins, the quantita-
tive analysis of flexibility and stiffness, and the structural characteristics 
that occur throughout protein folding [33]. 

3. Methods 

3.1. Bacteria selection 

For the search for new drugs with potential antimicrobial activity 
through a SA-TDA-based model, the Gram-negative species Escherichia 
coli was selected as a candidate microorganism to test in the model due 
to the high number of proteins registered in the Protein Data Bank (PDB) 
and because it is classified by the WHO as a critical priority in the search 
for new antimicrobials [34]. 

3.2. Structure-activity topological data analysis 

3.2.1. TDA pre-processing 
Once E. coli was selected as a target microorganism, the mathemat-

ical prediction model was developed using TDA-persistent homology 
(TDA-PH) for protein analysis (Fig. 1). The procedure carried out for the 
elaboration of the model consisted, first, in obtaining the data of all the 
drugs approved by the FDA. These data were obtained from a query in 
the DB database, where the known target proteins of these drugs were 
also identified from the same data [https://go.drugbank.com/relea 
ses/5-1-9, accessed on February 25, 2022]. To do this, the database 
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was downloaded in XML format and the relevant information was 
extracted using the dbparser package and customized R code [35]. The 
name and UniProt identifier of FDA-approved drugs was obtained to 
map these IDs with the corresponding PDB structure using the Retrie-
ve/ID mapping tool available in UniProt. All PDB structures that tar-
geted FDA-approved drugs were downloaded in PDB format. The 3D 
structures of E. coli proteins were also obtained from PDB. 

3.2.2. SA-TDA 
This paper uses an adaptation of a TDA-based methodology that 

combines concepts and results from algebraic topology to compare 
three-dimensional protein structures [36,37]. This model, called 
SA-TDA, encompasses a set of tools for visualizing, exploring, and 
analyzing data based on the topology of TDA models [29], the appli-
cation of PH for the comparison/similarity of known DNA proteins of 
approved drugs and bacterial proteins [32], and the combination with 
other computational models such as molecular docking for the identi-
fication of biologically active drug-target interactions (DTIs) from their 
binding energy [38–40]. All protein structures in PDB format were 
loaded into the R environment using the Bio3d package [41]. Then, each 
structure was represented in coarse grain, generating a 3D representa-
tion of the atomic coordinates of the alpha carbons of amino acids [42]. 
We worked with this representation because the complete structure of 
each protein presents a high degree of detail that could mask the general 
structure of the protein and, consequently, useful information. The ca-
pacity of the R environment allows these representations to be per-
formed on proteins with a number of amino acids equal to or less than 
1000. Therefore, those proteins with an amount greater than 1000 
amino acids were discarded from the assay. 

Taking as a “template” the arrangement of the alpha carbons of each 
protein, persistence diagrams were generated using the R TDAstats 
package, which internally uses the Ripser C++ library, a fast software 
optimized for Vietoris-Rips computing and persistence diagram con-
struction [43]. If a protein did not present any of the three dimensions, a 
pseudo-persistence diagram was added to each dimension. 

Once the persistence diagrams were generated, the similarity test 
was carried out. This operation was based on the principle of homology, 
where each query (query = E. coli protein) results in a comparison by 
similarity with all known drug targets from the DB database. 

Using the information contained in the persistent diagram, we 
construct a set of three functions in two variables. The first function, 
denoted by f1, represents the structure of the position of the individual 
coordinates of the alpha carbons of amino acids, the second function f2,
corresponds to the non-intersecting segments about these positions and, 
finally, the third function f3 corresponds to the non-intersecting tri-
angles constructed around these segments. These three functions are 
called the persistent Betti functions (PBFs) and they allow us to char-
acterize the representation of a protein’s tertiary structure. 

Therefore, we computed the PBFs using PDB structures from DB. To 
compare the shape of both structures, one given by the PBF {fi}i=3

i=1 of 
each structure from DB, against the PBF of each query proteins 
{fquery

i }
i=3
i=1 we construct the persistent similarity measure (PSM), which is 

defined as 

PSMi =

∫
min(fi(x), f query

i (x))dx
∫

max (fi(x), f query
i (x))dx

for i= 0, 1, 2.. (1) 

Then, we calculate the mean of the PSMs: 

PSM =
1
3
(PSM1 +PSM2 +PSM3) (2)  

for each protein comparison. A strict similarity threshold PSM ≥ 0.9 was 
selected to consider two protein structures as similar. This average 
similarity (Av. Sim) was calculated by the mean of the similarities of the 
primary (PSM1 = Sim. 1), secondary (PSM2 = Sim. 2) and tertiary 
(PSM3 = Sim. 3) structures of each of the proteins present in the study. 

3.2.3. Molecular docking 
Once the similarity study was completed, an in silico coupling 

screening using AutoDock 4.2, a molecular coupling software developed 
by the Scripps Research Institute, was added to the model. This 
screening allowed the addition to the model of information on the 
binding energies presented by the DTIs resulting from the trial. 

For this, the ligands were prepared obtaining the SDF format of the 
molecules in DB approved by the FDA. A customized R code and Open 
Babel v.3.0.0 were used to transform SDF to mol2 format [44–47]. The 
MGLTools v.1.5.7 toolkit was used to add polar hydrogens and proton-
ation at pH 7.4. Next, the drug structures in mol2 were converted to 

Fig. 1. Diagram of all the processes performed in the SA-TDA methodology to observe the similarity between E. coli proteins and drug targets of FDA-approved drugs.  
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PDBQT format and their stereochemical properties were calculated 
using AutoDock 4.2 [48]. So, a virtual screening library was built using 
these pre-processed drugs. Drugs containing atoms other than H, C, N, O, 
F, Mg, P, S, Cl, Ca, Mn, Fe, Zn, Br and I were discarded for the next steps 
because AutoDock does not include the values of the atomic force field 
and is therefore unable to dock on them. Polar hydrogens were also 
added to E. coli proteins extracted from PDB, which were also trans-
formed into PDBQT format. A grid box spanning the whole protein 
structure was set to perform blind docking. AutoDock was configured 
following the manual recommendations [49]. This screening allowed 
the exclusion of those DTI that presented binding energies greater than 
− 7 kcal/mol, since the literature considers these interactions as inactive 
at the biological level [38–40]. 

3.3. Interspecies protein similarities 

Since some of the pharmacological targets of the drugs approved by 
the FDA include proteins from bacterial species other than E. coli, a 
query was performed to find similarities between E. coli proteins present 
in the model results and proteins from different bacterial species present 
in the database of drug targets present in the same assay. This analysis 
met the same criteria as the main trial: a strict similarity threshold of 0.9 
and binding energy less than − 7 kcal/mol. This assay was performed to 
provide information on molecules with potential broad-spectrum anti-
microbial activity. 

4. Results 

4.1. Structure-activity topological data analysis (SA-TDA) 

The search of the DrugBank (DB) database resulted in 1,825 drugs 
being approved by the FDA (Fig. 1). These molecules were associated 
with 1,821 known protein targets, for which 27,839 three-dimensional 
structures were found in the PDB database. Computational limitations 
prevented the reading of 2,039 structures, so the persistence diagrams of 
25,800 protein structures were generated. 

In a second search in PDB, 1,306 Escherichia coli proteins were 
collected, and their persistence diagrams were generated following the 
same procedure as for the known target proteins. We detected that 33 of 
the proteins collected corresponded to essential genes for E. coli. 

4.2. Similarity test 

Once the similarity assay had been performed using TDA to compare 
the persistence diagrams of bacterial proteins and target proteins, 146 
E. coli proteins were found with an average similarity greater than 90% 
with the known targets of 529 drugs registered by the FDA. No average 
similarity exceeded 98% similarity between E. coli proteins and targets 
of drugs registered by the FDA. These bacterial proteins presented 891 
DTIs with the studied molecules. 

Among the 529 resulting molecules, drugs already known for their 
antimicrobial activity were observed (Table 1). These antibiotics are 
found within the families of cephalosporins of different generations, 
carbapenems, and semisynthetic penicillins. Some of these antibiotics 
had interactions with the proteins 6G9F and 1GER, proteins from 
essential genes of the bacterial species. Experimental antibiotics such as 
platensimycin, β-lactamase inhibitors such as relebactam and avi-
bactam, other antibiotic adjuvants such as adapalene, as well as anti- 
infective agents such as sulfacetamide and nitrofural, and antiseptics 
such as hexachlorophene were also found. 

4.3. Molecular docking 

A subsequent screening of the binding energies of the DTI found in 
the similarity test showed that, of these interactions, 361 presented 
binding energies greater than − 7 kcal/mol, which corresponded to 97 
bacterial proteins and 254 drugs, including drugs already established as 
antimicrobials (Table 1). 

4.4. Interspecies protein similarities 

Within the pharmacological targets of FDA-approved drugs, bacterial 

Table 1 
FDA-recognized antimicrobial molecules found in the SA-TDA model.  

DTI (E. coli protein- 
DrugBank ID) 

E. coli essential 
genes 

Name Description Sim. 
0 

Sim. 
1 

Sim. 
2 

Av. 
Sim. 

Energy 
(kcal/mol) 

1B3N-DB08407 No Platensimycin Antibiotic in preclinical phase 0.999 0.962 0.909 0.957 − 9.7 
6G9F-DB00303 Yes Ertapenem Carbapenem antibiotic drug 0.998 0.981 0.916 0.965 − 9.4 
6G9F-DB00948 Yes Mezlocillin Semisynthetic ampicillin-derived acylureido penicillin 0.998 0.981 0.916 0.965 − 9 
6G9F-DB01329 Yes Cefoperazone Semisynthetic broad-spectrum third-generation 

cephalosporin 
0.998 0.981 0.916 0.965 − 9 

6G9F- DB01328 Yes Cefonicid Second-generation cephalosporin 0.998 0.981 0.916 0.965 − 8.7 
3NBX-DB00210 No Adapalene Retinoid. Antibiotic adjuvant in the treatment of acne 0.997 0.856 0.858 0.904 − 8.6 
4J8L- DB01147 No Cloxacillin A semisynthetic antibiotic that is a chlorinated 

derivative of oxacillin 
0.994 0.932 0.786 0.904 − 8.5 

6G9F-DB09050 Yes Ceftolozane Semisynthetic broad-spectrum fifth generation 
cephalosporin 

0.998 0.981 0.916 0.965 − 8.1 

6G9F-DB01415 Yes Ceftibuten Third-generation cephalosporin antibiotic 0.998 0.981 0.916 0.965 − 7.9 
1BDH-DB01150 No Cefprozil Cephalosporin antibiotic 0.985 0.919 0.816 0.907 − 7.8 
6G9F-DB06211 Yes Doripenem Carbapenem antibiotic drug 0.998 0.981 0.916 0.965 − 7.7 
6G9F-DB01327 Yes Cefazolin Semisynthetic cephalosporin analog 0.998 0.981 0.916 0.965 − 7.5 
1GER-DB00336 Yes Nitrofural A topical anti-infective agent 0.999 0.984 0.906 0.963 − 7.4 
6G9F-DB01413 Yes Cefepime Fourth-generation cephalosporin antibiotic 0.998 0.981 0.916 0.965 − 7.3 
6G9F-DB01598 Yes Imipenem Semisynthetic thienamycin 0.998 0.981 0.916 0.965 − 7.3 
1B6R-DB01150 No Cefprozil Cephalosporin antibiotic 0.979 0.889 0.859 0.909 − 7.2 
2QZS-DB00634 No Sulfacetamide Anti-infective agent 0.928 0.934 0.841 0.901 − 7.1 
4J8L-DB00456 No Cephalotin Cephalosporin antibiotic 0.994 0.932 0.786 0.904 − 6.9 
1DPE-DB00634 No Sulfacetamide Anti-infective agent 0.989 0.921 0.794 0.901 − 6.7 
5V0I-DB12377 No Relebactam Diazabicyclooctane β-lactamase inhibitor 0.984 0.923 0.795 0.901 − 6.6 
5V0I-DB09060 No Avibactam Non- β-lactam β-lactamase inhibitor 0.984 0.923 0.795 0.901 − 6.5 
1F5V-DB00756 No Hexachlorophene A chlorinated bisphenol antiseptic (bacteriostatic) 0.956 0.893 0.851 0.900 − 6.4 
1C3B-DB00161 No Valine Branched-chain essential amino acid. Precursor in the 

penicillin biosynthetic pathway 
0.999 0.929 0.788 0.905 − 4.6 

DTI: drug-target interaction. 
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proteins of bacterial species other than E. coli were observed with an 
average topological similarity greater than 90%. Both Gram-positive 
and Gram-negative bacteria and mycobacteria were found. Some of 
these are also listed by the WHO as priorities in the search for new an-
tibacterials [34]. Table 2 shows the most important bacterial species 
that have appeared in the results of the similarity study along with 
proteins that have been shown to have a high degree of similarity with 
several E. coli proteins. Similarities were found with proteins present in 
the cell membrane as Penicillin-binding protein (PbP), in the periplasm 
as those related to the N-acetyl-anhydromuramoyl-L-alanine amidase 
activity and at the cytoplasm level as the malate synthase G (Table 2). 

4.5. Candidates 

The drugs selected by the model as molecules with potential anti-
microbial capacity belong to several families. Among these, some stand 
out for presenting molecules with greater binding energies and simi-
larities: antitumoral drugs, nucleotides, nucleosides, antipsychotics, 
antidepressants, retinoids, antimalarial agents, hypoglycemics, antihis-
tamines, antitussives, and neurotransmitters (Table 3). Nucleotides have 
been the family most present in this trial, followed by antidepressants. 
Several molecules, such as the antipsychotic aripiprazole, the antide-
pressants vortioxetine and duloxetine, the cough suppressant 

dextromethorphan, and the antihistamine chlorpheniramine, have 
coincided in presenting high binding energies against the same two 
E. coli proteins, 1HTT and 1F6D. The antidepressant desvenlafaxine and 
the neurotransmitter serotonin also targeted the 1HTT protein, 
becoming the most frequent protein in this study, followed by the 1F6D 
protein. Among the DTIs identified were some corresponding to targets 
from essential genes. All nucleotides except uridine-5′-diphosphate 
showed one or more interactions with proteins codified by essential 
genes, in addition to the molecules 7-methylguanosine, pyridoxine 
phosphate, tosyl-D-proline, and 3-indolebutyric acid. 

5. Discussion 

TDA has proved to be an important tool for examining dynamic 
processes such as protein folding [50]. One of the advantages of TDA is 
that it does not require a group of inactive compounds for the model to 
carry out its learning process. This is very favorable considering that 
negative activity results are not normally published, greatly compli-
cating access to molecular structures that are known to be inactive for 
the construction and validation of models [51]. This has contributed to 
understanding other dynamic properties of macromolecules, such as 
ligand binding, and to show the potential of this mathematical approach 
for identifying molecules of interest from their topological invariants 

Table 2 
Bacterial species classified by the WHO as priorities, and their proteins with high similarity to E. coli proteins resulting from the SA-TDA.  

E. coli 
Protein 

Similar 
protein 

Protein name Species (priority) General function Cellular 
location 

Sim. 
0 

Sim. 
1 

Sim. 
2 

Av. 
Sim 

1K75 1MV8 GDP-mannose 6- 
dehydrogenase 

Pseudomonas 
aeruginosa 
(critical) 

Udp-glucose 6-dehydrogenase activity NIa 0.987 0.954 0.815 0.919 

1BJN 1RCQ Alanine racemase, 
catabolic 

Pyridoxal phosphate binding NIa 0.992 0.909 0.803 0.902 
2RJG 0.993 0.943 0.813 0.916 
4PTY 0.975 0.881 0.845 0.9 
5WAN 4K2F Acyl-homoserine lactone 

acylase PvdQ 
N-acetyl-anhydromuramoyl-l-alanine amidase 
activity 

Periplasm 0.957 0.931 0.819 0.902 
1USG 0.967 0.909 0.853 0.909 
1DC3 0.925 0.948 0.842 0.905 
1BRM 0.994 0.928 0.796 0.906 
6LPI 1KBZ dTDP-4- 

dehydrorhamnose 
reductase 

Salmonella 
Typhimurium 
(critical) 

Metal ion binding NIa 0.963 0.938 0.825 0.909 

3AWI 2P2M Acetyl-coenzyme A 
synthetase 

Metal ion binding NIa 0.981 0.92 0.816 0.906 

1HTT 1LC7 Threonine-phosphate 
decarboxylase 

Threonine-phosphate decarboxylase activity NIa 0.988 0.914 0.804 0.902 
6XGY 0.987 0.902 0.843 0.911 
3TCF 1B3L Periplasmic 

oligopeptide-binding 
protein 

NIa Periplasm 0.993 0.97 0.84 0.935 
6IYK 0.996 0.918 0.822 0.912 
3O9P 0.976 0.946 0.826 0.916 
1GLG 3GBP d-galactose-binding 

periplasmic protein 
Metal ion binding Periplasm 0.985 0.959 0.796 0.913 

4GD3 2JJH Probable l-lysine-epsilon 
aminotransferase 

Mycobacterium 
tuberculosis 
(critical) 

NIa NIa 0.984 0.945 0.832 0.921 
3UQY NIa NIa 0.971 0.943 0.816 0.91 
2DGK NIa NIa 0.995 0.943 0.816 0.918 
3C3J 1TED Alpha-pyrone synthesis 

polyketide synthase-like 
Pks18 

Involved in the biosynthesis of tri- and 
tetraketide alpha-pyrones. Pks18 catalyzes the 
extension of medium- and long-chain aliphatic 
acyl-CoA substrates by using malonyl-CoA as an 
extender molecule to synthesize polyketide 
products 

NIa 0.979 0.929 0.801 0.903 

1D8C 6DNP Malate synthase G Involved in glycolate utilization. Catalyzes the 
condensation and subsequent hydrolysis of 
acetyl-coenzyme A (acetyl-CoA) and glyoxylate 
to form malate and CoA 

Cytoplasm 0.987 0.943 0.872 0.934 
1BJN 0.992 0.926 0.815 0.911 

1DS7 1KQD Oxygen-insensitive NAD 
(P)H nitroreductase 

Enterobacter 
cloacae (critical) 

Oxidoreductase activity NIa 0.994 0.944 0.763 0.901 

1BDH 5OJ1 Penicillin-binding 
protein 2x 

Streptococcus 
pneumoniae 
(medium) 

Penicillin binding Cell 
membrane 

0.985 0.889 0.832 0.902 
1B6R 0.973 0.935 0.829 0.913 
1BDH 1RP5 Penicillin-binding 

protein 2x 
Penicillin binding Cell 

membrane 
0.985 0.919 0.816 0.907 

1B6R 0.979 0.889 0.859 0.908 
2J5T 1LXK Hyaluronate lyase Hyaluronate lyase activity Secreted 0.991 0.912 0.805 0.903 
1BRM 1PR3 Aspartate-semialdehyde 

dehydrogenase 
Haemophilus 
influenzae 
(medium) 

Nadp binding NIa 0.999 0.962 0.813 0.925 
5WAN NIa 0.956 0.95 0.816 0.907  

a NI: not identified. 
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Table 3 
Molecules registered in the DB database with higher binding energies.  

Molecule Drug class E. coli 
target 

General function Cellular location Energies 
(kcal/mol) 

Enzastaurin Antitumor 2WIU Bacterial persistence 
mechanism regulator 

Cytosol; DNA-complex − 10.8 

Ezetimibe Lipid-lowering 2DQ6 Aminepeptidase N activity Plasma membrane − 9.9 
Nicotinamide adenine 

Dinucleotide 
phosphate 

Nucleotide 5AED Glucoside-hydrolase activity NIb − 9.9 
1OG6 Aldo-keto reductase activity Cytosol − 9.8 
1BSV GDP-fucose synthetase 

activity 
Cytoplasm − 9.7 

1L5J Aconitase B activity Cytoplasm − 9.2 
2XHY Hydrolase activity Cytosol − 9.2 
3DMY NIb Cytosol; integral component of membrane; succinate-CoA ligase 

complex 
− 9 

1BRMa Aspartate beta-semialdehyde 
dehydrogenase activity 

Cytosol − 8.4 

5WANa Oxidoreductase activity NIb − 8.4 
Uridine-5′-diphosphate Nucleotide 1AA6 Formate dehydrogenase H 

activity 
Cytosol; plasma membrane respiratory chain complex I − 9.5 

1A9Y UDP-galactose 4-epimerase 
activity 

Cytoplasm; cytosol − 8.8 

Histidyl-adenosine 
monophosphate 

Nucleotide 1Q12a Transport protein ATP-binding cassette (ABC) transporter complex; extrinsic 
component of cytoplasmic side of plasma membrane; maltose 
transport complex 

− 9.3 

1C3Ba AmpC beta-lactamase 
activity 

Outer membrane-bounded periplasmic space − 9.1 

6XGYa Lipid transport function Cytosol; protein-containing complex − 7.7 
Cytidine-5′-triphosphate Nucleotide 1H3Ma 4-diphosphocytidyl-2C- 

methyl-D-erythritol 
synthetase 

Cytosol − 8.8 

2′-deoxyguanosine-5′- 
monophosphate 

Nucleotide 1AIQa Thimidylate synthase activity Cytosol − 8.4 

Deoxyuridine 
monophosphate 

Nucleotide 1AIQa Thimidylate synthase activity Cytosol − 8.2 

Thymidine 
monophosphate 

Nucleotide 1CY0a DNA topoisomerase type I 
activity 

Chromosome; cytosol − 7.1 

7-Methylguanosine Nucleoside 1Q12a Transport protein ATP-binding cassette (ABC) transporter complex; extrinsic 
component of cytoplasmic side of plasma membrane; maltose 
transport complex 

− 8.1 

Aripiprazole Antipsychotic 1F6D UDP-N-acetylglucosamine 2- 
epimerase activity 

Cytosol − 9.6 

1HTT Histidyl-tRNA synthetase 
activity 

Cytosol − 8.6 

Vortioxetine Antidepressant 1HTT Histidyl-tRNA synthetase 
activity 

Cytosol − 9.1 

1F6D UDP-N-acetylglucosamine 2- 
epimerase activity 

Cytosol − 8 

Desvenlafaxine Antidepressant 1HTT Histidyl-tRNA synthetase 
activity 

Cytosol − 8.1 

Duloxetine Antidepressant 1HTT Histidyl-tRNA synthetase 
activity 

Cytosol − 8.3 

1F6D UDP-N-acetylglucosamine 2- 
epimerase activity 

Cytosol − 7.2 

Tamibarotene Retinoid 3NBX Regulatory ATPase activity Cytoplasm; cytosol − 8 
Artenimol Antimalarial agent 2XHY Hydrolase activity Cytosol − 8.5 

1K75 L-histidinol dehydrogenase 
activity 

Cytoplasm; cytosol − 7.9 

1YNF N-succinylarginine 
dihydrolase activity 

NIb − 7.8 

4GD3 Oxidoreductase activity and 
electron transport 

[Ni–Fe] hydrogenase complex; integral component of plasma 
membrane 

− 7.2 

3UQY Oxidoreductase activity [Ni–Fe] hydrogenase complex; outer membrane-bounded 
periplasmic space; ferredoxin hydrogenase complex; integral 
component of membrane; intrinsic component of periplasmic 
side of plasma membrane 

− 7 

Acarbose Hypoglycemic 1DPE Dipeptide-binding protein ATP-binding cassette (ABC) transporter complex; outer 
membrane-bounded periplasmic space 

− 8.5 

3UQY Oxidoreductase activity [Ni–Fe] hydrogenase complex; outer membrane-bounded 
periplasmic space; ferredoxin hydrogenase complex; integral 
component of membrane; intrinsic component of periplasmic 
side of plasma membrane 

− 7 

Pyridoxine phosphate Pyridoxine 1HO4a Pyridoxine 5′-phosphate 
synthase 

Cytosol − 8.2 

Dextromethorphan Cough suppressant 1F6D UDP-N-acetylglucosamine 2- 
epimerase activity 

Cytosol − 8 

(continued on next page) 
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[52]. Being a newer tool compared to other techniques, there are few 
studies in the literature where this model is applied in terms of the 
search for new antimicrobials. In 2021 Hernández-Ochoa et al. applied a 
TDA strategy to verify the possible antimicrobial activity of 55 new 
compounds against Helicobacter pylori [53]. In this study, interactions 
were discovered with the enzyme glucose-6-phosphate dehydrogenase. 
After the results obtained, the compounds represent new candidates for 
promising drugs against this infection. However, it is important to 
remember that we are talking about in silico methods and results. Such 
methodologies have two key points to consider. The first point is the 
importance of having any information resulting from these tests checked 
and revised by the corresponding in vitro tests to confirm that the 
computational models meet their predictive capacity. By performing 
this order of testing (in silico -> in vitro), the second key point is to 
improve the prediction models. These improvements can be carried out 
by applying the model to new molecule databases to obtain more pre-
dictions, which can be experimentally validated to adjust the model. 
One of the databases that could support the specificity of the model 
could be DRESIS. DRESIS is a comprehensive database which contains 
drug resistance information [54]. It can systematically provide all 
existing types of molecular mechanisms underlying drug resistance and 
describe the clinically/experimentally verified resistance data for the 
largest number of drugs. The results presented in this work are the result 
of a first trial with the SA-TDA-based model, which does not include the 
DRESIS database. This database could improve the information pro-
vided by the topological data of the proteins and drugs present in the 
results. It would be interesting to add to the model databases related to 
resistance mechanisms and drugs associated with them to try to create a 
version of the SA-TDA model more specific to the search for new anti-
microbials effective against resistant microorganisms. 

This work aims to identify molecules with potential antimicrobial 
capacity through an SA-TDA model, which uses the methodology of TDA 
and PH to identify molecules with potential antimicrobial activity from 
the topological similarities between proteins registered as pharmaco-
logical targets of FDA-approved drugs and E. coli proteins. The combi-
nation of models that use TDA together with ML tools results in a 
methodology with impressive predictive accuracy, preserving the per-
formance and interpretability of the TDA, compared to models that use a 
single approach [55,56]. The presence of carbapenems, cephalosporins 
of different generations, and semisynthetic penicillins, along with other 
agents involved as antibiotic, disinfectant, or antiseptic adjuvants 
among the drugs selected by the model, confirms its predictive capacity 
to find molecules with antimicrobial activity (Table 1). In addition, 
carbapenems and some cephalosporins present in the assay have DTI 
with proteins from essential genes. These results confirm the model’s 
ability to detect molecules with antibiotic capacity. However, the 

possibility of detecting molecules with antivirulent properties using the 
same model should not be ruled out, since this class of drugs act against 
virulence factors, which is an advantage as the growth and selective 
pressure of resistant bacteria is not influenced [57]. It is important to 
note that some of the molecules present in the table, such as cephalotin 
or avibactam, have binding energies below the corresponding criterion 
with the literature consulted to define a DTI as having biological activity 
[38–40]. However, the properties of these two drugs have been broadly 
defined in the literature, being molecules that are used in current ther-
apeutics [58–61]. It is possible that the SA-TDA model does not 
contemplate other parameters of interest for the search for potential 
molecules with the desired pharmacological activity. Therefore, it 
would be interesting to carry out more analysis on those molecules that 
are in these margins or to combine other computational approaches that 
allow the screening of other data of interest on DTI to expand the search 
for molecules with potential antimicrobial activity. 

Regarding the shape analysis of E. coli proteins with other bacterial 
species, high degrees of similarity have been observed in certain proteins 
of M. tuberculosis and S. pneumoniae. Proteomic similarities between 
E. coli and M. tuberculosis have been obtained in several studies [62–64]. 
However, despite coinciding in some mechanisms of infection, no 
studies have been found that speak to the structural similarities of E. coli 
and S. pneumoniae proteins [65,66]. Most of the bacteria present in 
Table 2 belong to the class of Gammaproteobacteria. Among them we 
find S. Typhimurium, which belongs to the Enterobacterales order, like 
E. coli. The model’s ability to find similarities between species could 
provide information on the potential spectra of active molecules found 
in future similarity tests. These spectra could range from antibiotics for 
Enterobacterales or other Gram-negative microorganisms to 
broad-spectrum antimicrobials that also exhibit activity against 
Gram-positive and mycobacteria. It is important to highlight that one of 
the main challenges in drug discovery is the search for active molecules 
that cross the cell wall of Gram-negative bacteria, due to their lipid 
bilayer membranes, porins and efflux pumps [16,67]. As can be seen in 
Table 2, our model presents DTI with bacterial targets found in the 
cytoplasm, so it would be interesting to perform in vitro tests with these 
molecules to check if this interaction occurs, since antimicrobial mole-
cules capable of crossing the cell wall of Gram-negative bacteria could 
be found. 

Regarding the drugs present in the results, we observed a wide va-
riety of molecules with different structures (Figs. 2–5). Enzastaurin, an 
investigational antitumor drug for the treatment of several cancers, 
including breast cancer [68,69], has a high binding energy against one 
of the E. coli proteins (Table 3). 2WIU, known as HipA, is a protein ki-
nase that, when bound to HipB DNA, forms a complex that regulates the 
persistence of E. coli, inducing a latency period during which it is 

Table 3 (continued ) 

Molecule Drug class E. coli 
target 

General function Cellular location Energies 
(kcal/mol) 

1HTT Histidyl-tRNA synthetase 
activity 

Cytosol − 7.6 

Serotonin Neurotransmitter 1HTT Histidyl-tRNA synthetase 
activity 

Cytosol − 7.7 

Deoxycholic acid Cytolytic agent 3FSLa Tyrosine aminotransferase 
activity 

Cytoplasm; cytosol − 7.7 

1DEA Glucosamine 6-phosphate 
deaminase activity 

Cytoplasm; cytosol − 7.5 

Tosyl-d-proline Toluen 1AIQa Thimidylate synthase activity Cytosol − 7,5 
Chlorpheniramine Antihistamine 1F6D UDP-N-acetylglucosamine 2- 

epimerase activity 
Cytosol − 7.4 

1HHT Histidyl-tRNA synthetase 
activity 

Cytosol − 7.2 

3-Indolebutyric acid Heterocyclic 
compound, fused ring 

3FSLa Tyrosine aminotransferase 
activity 

Cytoplasm; cytosol − 7,3  

a E. coli proteins codified by essential genes. 
b NI: not identified. 
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protected from the effects of antibiotics [70]. Therefore DTI 
HipA-enzastaurin could alter persistence activity allowing antibiotic 
treatments to be effective. No studies have been found that describe any 
non-human pharmacological target. There were also no targets from any 

organism other than humans in the DB database. However, literature 
exists on the use of antibiotics as antitumor drugs, sometimes as the 
main method to treat malignancies [71]. This is due to the high struc-
tural similarities that exist between bacterial and human proteins. These 

Fig. 2. (A). Structure of the antitumor enzastaurin; (B). Structure of the lipid-lowering ezetimibe.  

Fig. 3. (A). Structure of the nucleotide nicotinamide adenine dinucleotide phosphate (NADPH); (B). Structure of the nucleotide uridine-5′-diphosphate (UDP); (C). 
Structure of the histidyl-adenosine monophosphate nucleotide (H-AMP); (D). Cytidine-5′-triphosphate (CTP) nucleotide structure; (E). Nucleotide structure 2′- 
deoxyguanosine-5′-monophosphate (dGMP); (F). Structure of the nucleotide deoxyuridine monophosphate (dUMP); (G). Structure of the nucleotide thymidine 
monophosphate (TMP); (H). Structure of the nucleoside 7-methylguanosine. 

Fig. 4. (A). Structure of the antipsychotic aripiprazole; (B). Structure of the antidepressant vortioxetine; (C). Structure of the antidepressant desvenlafaxine; (D). 
Structure of the neurotransmitter serotonin; (E). Structure of the antihistamine chlorpheniramine; (F). Structure of the antitussive dextromethorphan. 
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similarities, which are also reflected in the results of this model, could be 
the mathematical prediction results needed to design new antibiotics 
targeting these proteins and/or to reposition known drugs that recog-
nize these targets as potential antimicrobials [72]. These results could be 
of interest to "reverse" the process of repositioning antitumor drugs for 
the search for new antibacterials. Ezetimibe is a drug belonging to the 
group of non-antibiotic betalactams that has been widely used as a 
lipid-lowering agent in disorders such as primary hyperlipidemia and 
familial cholesterolemia [73]. In this study ezetimibe had only one DTI 
with the protein 2DQ6, the major aminopeptidase in E. coli [74]. It is 
involved in ATP-dependent downstream processing during cytosolic 
protein degradation and possess significant physiological functions as a 
receptor [75]. No work has reflected any DTI of ezetimibe with E. coli 
proteins. However, due to its topological properties and the DTI 
observed in the results, ezetimibe could be a molecule of interest for the 
search for new betalactam antibiotics, acting as a lead compound. 

The dinucleotide nicotinamide adenine dinucleotide phosphate 
(NADPH) is present in metabolic processes of many living organisms, 
including bacteria such as E. coli and H. influenzae [76,77]. According to 
the model, the two E. coli proteins similar to the H. influenzae protein 
1PR3 could interact with the presence of NADPH with high biological 
activity (Tables 2 and 3). There are studies that show that the alteration 
of NADPH in the metabolism of Gram-negative bacteria and mycobac-
teria allows a greater sensitivity to different antibiotics [78–80]. A study 
by Lyons et al., explains the role of NADPH as an adjuvant to F-Box 
Stress-induced 1 (FBsl), an N-hydroxylated monooxygenase involved in 
the biosynthesis of fimsbactin A, the main siderophore produced by 
Acinetobacter baumannii [81]. In this study, NADPH had eight DTI with 
the proteins 5AED, 1OG6, 1BSV, 1L5J, 2XHY, 3DMY, 1BRM and 5WAN. 
5AED, or YihQ is a sulfoquinovosidase with hydrolisis activity against 
alpha-glucosyl fluoride [82]. This activity allows the stability in the 
protein synthesis. 1BSV is a GDP-fucose synthetase with dual function in 
the sugar metabolism [83]. Defects in GDP-fucose biosynthesis have 
been shown to affect nodulation in bacteria. 1L5J is the major bifun-
cional aconitase of E. coli (AcnB), and represents a large, distinct group 
of Gram-negative bacterial aconitases that have an altered domain or-
ganization relative to other aconitases [84]. AcnB serves as either an 
enzymic catalyst or a mRNA-binding post-transcriptional regulator. 
2XHY or BglA is a cytoplasmic enzyme and part of the glycosal hydrolase 
family that is able to hydrolase aromatic β-glucoside phosphates [85]. 
1BRM is a aspartate β-semialdehyde dehydrogenase (ASADH) which lies 
at the first branch point in an essential aspartic biosynthetic pathway 
found in bacteria and other organisms [86]. ASADH may be an effective 
target for antibacterial agents because mutations in the asd gene 
encoding for ASADH produce an enzyme that is inactive and lethal to the 

organism. 5WAN or flavoenzyme RutA catalyze, along with the flavin 
reductase RutF, the initial uracil ring opening by an unprecedent 
“oxidative” hydrolysis reaction to give 3-ureidoacrylate [87]. Many of 
the proteins that interact with NADPH are involved in metabolic pro-
cesses, some are even essential for E. coli. It would therefore be inter-
esting to investigate these targets further to see if they can be applied in 
the design of future antimicrobial therapies. 

Another nucleotide present in our results was uridine-5′-diphosphate 
(UDP), which had two pharmacological targets of E. coli registered in the 
DB database, although it did not specify what its function was in them. A 
work by Šudomová et al. reveals the efficacy of UDP as an inhibitor of 
UDP-galactopyranose mutase, an enzyme vital in the cell wall biosyn-
thesis of M. tuberculosis [88]. Our model has not identified these targets 
in the similarities between E. coli and M. tuberculosis. However, the 
molecules presented in this work could have other M. tuberculosis targets 
with functions similar to those of UDP. Histidyl-adenosine mono-
phosphate (H-AMP) presents a single target of E. coli in the DB database, 
specifically a histidine-tRNA ligase. This model has identified three new 
possible targets of E. coli for H-AMP that come from essential genes. One 
of them, the 1C3B protein, is a AmpC β-lactamase, and the othe one 
protein, 6XGY, has topological similarities with the 
threonine-phosphate decarboxylase of S. Typhimurium (Tables 2 and 3). 
However, no literature has been found related to antibacterial activity 
against either microorganism. These results expose the possibility of 
finding new molecules with activity against bacteria of Enterobacterales 
from the topological properties of H-AMP. Cytidine-5′-triphosphate 
(CTP) is a nucleotide that presents E. coli and S. Typhimurium targets in 
DB, although no mechanism of action is explained. The model has 
identified a single protein from essential E. coli genes but, in contrast to 
H-AMP, no topological similarities were found between of E. coli and S. 
Typhimurium targets (Table 2), nor literature that speaks of antibiotic 
actions against any microorganism. However, the protein 1H3M is an 
essential enzyme in the mevalonate-independent pathway of isoprenoid 
biosynthesis, whose structure suggest that the enzyme is a suitable target 
for a structure-based approach to the development of novel 
broad-spectrum antibiotics [89]. These results could be the beginning of 
a search for new antimicrobials that present these proteins as pharma-
cological targets. 2′-deoxyguanosine-5′-monophosphate (dGMP) and 
deoxyuridine monophosphate (dUMP) have presented a single DTI both 
in our model and in the DB database. This is thymidylate synthase, an 
enzyme from the essential thyA gene that participates in DNA synthesis 
in the case of E. coli, but also appears in other microorganisms with other 
vital functions related to the folate pathway [90,91]. There are no 
bibliographic records on the activity of dGMP in this target or any other 
as a molecule with antimicrobial properties. In the case of dUMP, it is a 

Fig. 5. (A). Structure of the retinoid tamibarotene; (B). Structure of the antimalarial artenimol; (C). Structure of the hypoglycemic acarbose; (D). Structure of the 
cytolytic deoxycholic acid; (E). Structure of the heterocyclic compound 3-indolebutyric acid; (F). Structure of the pyridoxine phosphate molecule; (G). Structure of 
the molecule tosyl-D-proline. 
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molecule that interacts directly with the enzyme whereby the alteration 
of the latter can encourage the appearance of resistance in species such 
as M. tuberculosis [90], so it would be interesting to carry out studies on 
similar molecules or those with the same target to find drugs with 
antituberculous activity. The nucleotide thymidine monophosphate 
(TMP) also has interactions with M. tuberculosis enzymes, in addition to 
E. coli and P. aeruginosa, according to the DB database. In our study, such 
coincidences were not found, since only a single protein from the 
essential topA gene was observed with a DTI of high binding energy, 
which, according to PDB, corresponds to the enzyme DNA Topoisom-
erase I of E. coli (Table 3). However, several studies describe the 
importance of this molecule in the search for nucleotide analogs to 
identify new antituberculous drugs, so that, with the data provided by 
our model, we could expand the antimicrobial spectrum of known 
molecules [92–96]. For 7-methylguanosine nucleoside, no target infor-
mation was found for E. coli or any other bacteria in the DB database or 
in the literature. However, the model identified a DTI with a protein 
from essential genes. These results for nucleotides and nucleosides 
highlight the importance of looking for new antimicrobials from the 
DTIs involving these molecules or their participation with enzymes of 
other microorganisms of interest, such as most of those present in 
Table 2, in addition to A. baumannii, listed by the WHO as a critical 
priority in the search for new antibiotics [34]. These results also high-
light the importance of searching for new antimicrobial drugs from 
nucleotide and nucleoside analogs. 

One of the most relevant results of our model relates to the presence 
of psychotropic drugs (Fig. 3) such as aripiprazole, vortioxetine, des-
venlafaxine, and duloxetine (Table 3). Recent studies show the influence 
of these drugs on the composition of the intestinal microbiota, whose 
role in the regulation of gut-brain interactions is being increasingly 
demonstrated [97]. In our study, these molecules presented DTI with 
two proteins with similar binding energies, becoming the two most 
frequent bacterial proteins in the model. These proteins are 1HTT and 
1F6D (Table 2). 1HTT is a histidyl-tRNA synthetase belongs to the class 
II of aminoacyl-tRNA synthetases [98]. 1F6D is a bacterial epimerase 
which provides bacteria with UDP-N-acetylmannosamine (UDP-Man-
NAc), the activated donor of ManNAc residues [99]. ManNAc is critical 
for several processes in bacteria, including formation of the anti-
phagocytic capsular polysaccharide of pathogens such as S. pneumoniae. 
These proteins also present DTI with chlorpheniramine and dextrome-
thorphan, which will be considered further below. The neurotransmitter 
serotonin also interacts with the protein 1HTT, and there is a very 
extensive literature on the role of this molecule in altering microbial 
diversity in the gut microbiota of different animal species [100,101]. 
This is because gut microorganisms influence brain functions by acting 
through the vagus nerve or by altering the production of short-chain 
fatty acids or the amino acid tryptophan, the building block of seroto-
nin [102]. In addition, there are microorganisms capable of producing 
or regulating serotonin metabolism [103]. However, this neurotrans-
mitter does not present any target against E. coli registered in the DB 
database. Nor does aripiprazole, a molecule with antipsychotic phar-
macological function, present any known DTI with E. coli in DB, but 
there are studies that demonstrate its role as a modulator of the intes-
tinal and cutaneous microbiota [99,104]. These data show that aripi-
prazole, or molecules with similar characteristics, may merit future 
research related to microbiota therapy. Vortioxetine, desvenlafaxine, 
and duloxetine are antidepressant modulators and stimulators of neu-
rotransmitters such as serotonin and norepinephrine. No DTI with bac-
terial proteins were found in DB. In the case of vortioxetine and 
desvenlafaxine, no literature was found relating to the targets that 
appeared in our study, nor a pharmacological role beyond that of anti-
depressant. In the case of duloxetine, literature has been found 
regarding its role in the manipulation of the intestinal microbiota, spe-
cifically in the acceleration of the emergence of antibiotic resistance due 
to the combination of both classes of drugs in therapy [105,106]. Several 
studies explain how the antidepressants duloxetine, fluoxetine, 

sertraline, quetiapine, and bupropion promote conjugative transfer of 
multi-antibiotic resistance genes [105,107]. Another more recent study 
by Wang et al. revealed by means of a mathematical model and 
phenotypic and genotypic analyzes the increase of species with greater 
resistance and persistence to antimicrobial treatments [108]. These re-
sults expose the importance of the use of antidepressants in antimicro-
bial therapies, where new measures should be proposed for a reasonable 
use of these drugs and their combinations. In addition, due to the lack of 
information on vortioxetine and desvenlafaxine, it would be interesting 
to carry out trials to test their possible repositioning as antibiotics to 
prove the effectiveness of the model in the search for new antimicro-
bials, as well as studies that expose the possible synergy between these 
molecules and different antibiotics, along with their role in the manip-
ulation of the intestinal microbiota and the possible risk of increasing 
AMR, as seen in other antidepressants. Overall, this model could provide 
new insights into bacterial responses to antidepressants and improve 
understanding of the effects of antidepressant treatment. 

On a different note, as mentioned previously, both dextromethor-
phan and chlorpheniramine coincide with the targets of the four psy-
chotropic resulting from our model (Table 3). Like vortioxetine and 
duloxetine, no records on DTI with bacterial proteins are found in the DB 
database. A study by Kirkwood et al. described the in vitro efficacy of 
chlorpheniramine as a growth inhibitor of Mycobacterium abscessus 
[109]. Given the lack of literature on these molecules in antimicrobial 
therapeutics, and the results obtained in this in silico trial, it would be 
interesting to carry out more studies to show their possible antimicrobial 
activity and, in the case of chlorpheniramine, its antimicrobial 
spectrum. 

Tamibarotene is a new synthetic retinoid that is approved in Japan 
and in clinical trials in the US for the treatment of acute promyelocytic 
leukemia [110]. This molecule presents, according to our model, the 
same target as adapalene, a third-generation topical retinoid (Tables 1 
and 3). Adapalene is used as an antibiotic adjuvant in the treatment of 
acne vulgaris, a disorder of the pilosebaceous unit caused by Cutibacte-
rium acnes (Propionibacterium acnes) [111–113]. Due to the similarity of 
binding energies against the same target, it seems possible that tami-
barotene has the same adjuvant properties as adapalene (Table 1 and 3). 
However, no literature has been found in this regard, nor pharmaco-
logical targets of microbial origin that interact with this molecule in the 
DB database, which makes it of interest for future trials to verify its 
possible antimicrobial or antibiotic adjuvant effect. 

Artenimol (also known as dihydroartemisinin) is an antimalarial 
agent used in combination with piperaquine for uncomplicated Plas-
modium falciparum infections [114]. However, there are also studies that 
expose its efficacy as an adjuvant in chemodynamic and photodynamic 
antibacterial therapies [115,116]. Additionally, studies such as those of 
Huang et al. and Kalani et al. exhibit the efficacy of artenimol in com-
bination with antibiotics such as cefuroxime and ampicillin against 
E. coli infections, and in combination with rifampicin against 
M. tuberculosis [117,118]. 

Acarbose, an oral hypoglycemic agent used for glycemic control in 
patients with type 2 diabetes mellitus, has also demonstrated efficacy as 
a potential antimicrobial drug in several in silico and in vitro trials [119]. 
It has even been used as a control molecule to evaluate other α-gluco-
sidase inhibitors as potential bacterial growth inhibitors [120–122]. The 
mechanism of acarbose as an inhibitor of bacterial growth is due to the 
similarities of human and bacterial α-glucosidase enzymes. In fact, there 
are known cases of intestinal and oral human microbiota that present 
enzymes that phosphorylate acarbose, inactivating it [123]. Therefore, 
as we have been able to observe with psychotropic drugs, it is important 
to make reasonable use of this drug to avoid possible AMRs. 

Deoxycholic acid is a cytolytic agent that has demonstrated its effi-
cacy in regulating primary bile acids by altering the intestinal micro-
biota, and as an antibiotic adjuvant together with polyamines for facial 
infections [124,125]. This association with the intestinal or cutaneous 
microbiota favors the prevention and treatment of bacterial infections, 

A. Tarín-Pelló et al.                                                                                                                                                                                                                            



Computers in Biology and Medicine 166 (2023) 107496

11

alone or combined with antibiotics, which it potentiates. 
Finally, 3-indolebutyric acid, which, according to the model, could 

interact with the protein from essential genes 3FLS, presents a single 
study where it exposes its antimicrobial efficacy in the so-called nano-
particle antimicrobial therapy, so it would be interesting to carry out 
more in vitro tests to demonstrate this efficacy as an antibiotic [126]. 
Pyridoxine phosphate and tosyl-D-proline both present, in our model and 
in the DB database, a pharmacological target against E. coli from 
essential genes (Table 3). However, no literature has been found on DTI 
with antimicrobial effect against any pathogen, so it would be inter-
esting to carry out more studies to verify the possible efficacy as an 
antibiotic or antivirulent adjuvant of these two molecules. 

All these results prove the specificity of the model to predict mole-
cules with potential antimicrobial activity or antibiotic adjuvants, also 
helping to predict possible DTI that could favor the appearance of AMR. 

6. Conclusion 

The present in silico assay has shown that the SA-TDA-based model 
has been able to identify of antibiotic drugs such as cephalosporins, 
carbapenems and semisynthetic penicillins, in addition to other mole-
cules also known for their use as antibiotic adjuvants or disinfectant 
agents. These results confirm the model’s ability to predict, from the 
topological similarities of known target proteins of FDA-approved drugs 
and E. coli proteins, molecules with potential antimicrobial properties. 
Within the known targets, proteins of other pathogens of interest in the 
search for new antibiotics have been found, so the model could be 
detecting new broad-spectrum antibiotics, being able to deal with Gram- 
positive, Gram-negative and mycobacteria. The molecules detected in 
the model have been very diverse in terms of their pharmacological 
function. Among them, nucleotides stand out as they are the most 
frequent family in the study, followed by antidepressants. Nucleotides 
have an extensive literature as antibiotic adjuvants. In addition, our 
model has presented new targets that could be of interest for future 
antimicrobial therapies, so it would be interesting to carry out more tests 
aimed at finding antibiotic molecules with topological properties similar 
to those of nucleotides. Antidepressants also stood out for concurring in 
the same two targets in E. coli, so it would be interesting to carry out 
more studies to confirm the antibacterial activity of antidepressants with 
these targets, in addition to other molecules that, as in this study, show 
DTI with high binding energies to these proteins. Although the results 
provided by the model are promising, there is still a need for in vitro 
assays to confirm the reliability and specificity of the model, as well as to 
observe its limitations, thus improving the search for molecules with 
potential antimicrobial capacity by using mathematical prediction 
models, topological data analysis and drug repurposing. 
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A. Tarín-Pelló et al.                                                                                                                                                                                                                            

https://doi.org/10.1080/14756366.2023.2171029
https://doi.org/10.1080/14756366.2023.2171029
https://doi.org/10.1016/j.vph.2023.107141
https://doi.org/10.1074/jbc.M605203200
https://doi.org/10.1099/mic.0.26518-0
https://doi.org/10.1099/mic.0.26518-0
https://doi.org/10.1038/NRD2199
https://doi.org/10.1038/NRD2199
https://doi.org/10.1038/NRD2132
https://doi.org/10.1038/NRD2132
https://doi.org/10.3390/cells11172667
https://doi.org/10.3390/cells11172667
https://doi.org/10.1016/j.ejmech.2022.114908
https://doi.org/10.3390/microorganisms10112205
https://doi.org/10.3390/microorganisms10112205
https://doi.org/10.1021/acs.biochem.2c00493
https://doi.org/10.1021/acs.biochem.2c00493
https://doi.org/10.1038/nchembio.2023
https://doi.org/10.1038/nchembio.2023
https://doi.org/10.1016/s0969-2126(98)00157-9
https://doi.org/10.1038/nsb801
https://doi.org/10.1371/journal.pone.0032498
https://doi.org/10.1006/jmbi.1999.2828
https://doi.org/10.1021/ja9107676
https://doi.org/10.3390/MD17110641
https://doi.org/10.3390/MD17110641
https://doi.org/10.1107/s090744490202365x
https://doi.org/10.1107/s090744490202365x
https://doi.org/10.1038/s41598-019-48940-5
https://doi.org/10.7717/peerj.5023
https://doi.org/10.7717/peerj.5023
https://doi.org/10.3390/microorganisms10071299
https://doi.org/10.3390/microorganisms10071299
https://doi.org/10.3390/molecules27196216
https://doi.org/10.3390/molecules27196216
https://doi.org/10.1016/j.bioorg.2022.106312
https://doi.org/10.1016/j.ejmech.2020.112659
https://doi.org/10.1016/j.ejmech.2020.112659
https://doi.org/10.1016/j.carres.2018.01.001
https://doi.org/10.1016/j.carres.2018.01.001
https://doi.org/10.1007/s00213-018-5006-5
https://doi.org/10.1002/j.1460-2075.1995.tb00088.x
https://doi.org/10.1002/j.1460-2075.1995.tb00088.x
https://doi.org/10.1021/bi001627x
https://doi.org/10.1021/bi001627x
https://doi.org/10.1128/mbio.02191-22
https://doi.org/10.1128/mbio.02191-22
https://doi.org/10.3389/fphys.2022.1035538
https://doi.org/10.3389/fphys.2022.1035538
https://doi.org/10.1111/joim.13543
https://doi.org/10.1016/j.phrs.2022.106291
https://doi.org/10.1016/j.phrs.2022.106291
https://doi.org/10.1111/dth.12637
https://doi.org/10.1111/1462-2920.16165
https://doi.org/10.1111/1462-2920.16165
https://doi.org/10.1080/19490976.2021.2018901
https://doi.org/10.1080/19490976.2021.2018901
https://doi.org/10.1128/jb.00102-22
https://doi.org/10.1128/jb.00102-22
https://doi.org/10.1073/PNAS.2208344120
https://doi.org/10.4103/ijmy.ijmy_142_18
https://doi.org/10.4103/ijmy.ijmy_142_18
https://doi.org/10.11406/rinketsu.61.874
https://doi.org/10.55519/JAMC-04-9568
https://doi.org/10.1684/ejd.2022.4306


Computers in Biology and Medicine 166 (2023) 107496

14

approved chemical library- a drug repurposing approach to combat carbapenem 
resistance, J. Biomol. Struct. Dyn. (2022) 1–12, https://doi.org/10.1080/ 
07391102.2022.2123402. 

[114] J. Hernandez Maldonado, O. Grundmann, Drug-drug interactions of artemisinin- 
based combination therapies in malaria treatment: a narrative review of the 
literature, J. Clin. Pharmacol. 62 (10) (2022) 1197–1205, https://doi.org/ 
10.1002/jcph.2073. 

[115] Y. Xu, L. Xiao, J. Chen, Q. Wu, W. Yu, W. Zeng, Y. Shi, Y. Lu, Y. Liu, á-Fe 2O3 
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