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Introduction
Multiple sclerosis (MS) is a chronic inflammatory 
disease of the central nervous system, characterized 
by demyelination and axonal loss.1 It is estimated 
that more than 2.8 million people are diagnosed 
around the world, and the incidence is increasing.2 
It usually presents between the third and fourth 
decade of the life and has a high social impact.3–5

The ethology is unknow,6 and it is hypothesized 
that autoreactive lymphocytes migrate to the cen-
tral nervous and would be the responsible of the 
demyelinating plaques.7

The lesions can affect all the areas of the central 
nervous system, the histopathology is different 

among patients,8–11 and for these reasons, the 
clinical manifestations and the evolution of the 
patients are very variable.12,13

Consequently, the diagnosis is complex, and it is 
based on criteria diagnosis which include the 
assertion of symptoms related with demyelination 
and laboratory test.14–16

Regarding this, the hallmark of the disease is the 
presence of intrathecal IgG synthesis,14,17–19 dem-
onstrating the aberrant activation of B-lymphocytes 
in the central nervous system. Intrathecal IgG syn-
thesis can be observed in approximately 70% of 
MS patients using quantitative methods.17 These 
assays are based on the quantification of IgG and 
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albumin in the cerebrospinal fluid (CSF) and 
serum using nephelometry.20

Nevertheless, the sensitivity of these procedures is 
lower compared to qualitative techniques. The 
later, based on isoelectric focusing and immuno-
detection assays demonstrated the presence of 
oligoclonal bands in approximately 90% of MS 
patients.18,21–23

Currently, the detection of oligoclonal IgG bands 
(OIgGBs) is the gold standard for the diagnosis of 
MS.14,17,21–24 The pattern of OIgGBs is variable 
among MS patients, but it remains unchanged in 
the same patient.23,25,26 Moreover, the IgG 
obtained extracted from autopsy brain plaques 
also showed and oligoclonal pattern.27

These evidences indicate that different antigens 
can be involved in the activation of the humoral 
immune response in MS patients. It was observed 
that IgG from the CSF target myelin and neuron 
antigens, such as, myelin basic protein,28–31 mye-
lin oligodendrocyte glycoprotein,32 proteolipid 
lipoprotein,31 myelin-associated glycoprotein,33 
glycolipids, fatty acids, and neurofilaments.34 
Other authors demonstrated that antibodies from 
MS patients bind to oligodendroglial and neu-
ronal cell-lines.35 Recently, is was demonstrated 
that OgIgGBs target debris.21 These data indicate 
that IgG also plays a pathogenic role.

Unfortunately, the detection of OIgGBs is cum-
bersome and the sensitivity between laboratories 
is very variable.36–38 Moreover, it is necessary to 
perform a lumbar puncture to obtain CSF, an 
invasive technique with important side effects.

An ideal biomarker must be specific of the disease, 
safe for the patient, easy to detect, and in the best 
case, the proceeding must be noninvasive. Blood 
samples fulfill these requirements, the obtention 
of the sample is safe, quick, and easy, and it could 
be performed at different timepoints.39

Regarding this, the presence in blood of B cell 
against brain antigens is related to disease relapses 
in MS.40 The number of CD5+ B lymphocytes 
are also related with the activity of the disease.41 
These cells produce natural antibodies, most of 
which recognize lipids,42–44 and it was described 
that serum antibodies to this antigens correlate 
with the damage of the brain tissue.45 These data 
indicate that peripheral lymphocytes play a main 

role in myelin destruction and are in agreement 
with the mechanisms occurring in the central 
nervous during the progressive phase of MS.7,46

High levels of S100β in serum are detected dur-
ing exacerbations in remittent recurrent MS 
patients.47,48 There is a correlation between the 
levels of neurofilament light chain (NfL) in CSF 
and those observed in serum.6,49,50 The levels of 
NfL associate with the activity of the disease,51 
number of lesions observed in magnetic reso-
nance imaging (MRI)50,52–54 and disability.55 
However, other authors indicate that there is no 
correlation between the levels of NfL and long-
term disability or number of relapses overtime.52

In summary, there is not a universally accepted 
serum biomarker for the diagnosis or predicts the 
prognosis of MS up today. Therefore, it is neces-
sary to determine new diagnosis and prognosis 
biomarkers in MS.

Here, we demonstrate that serum IgM to phos-
phatidylcholine (IgMPC) is a new diagnosis bio-
marker and also predicts the response to disease 
modifying therapies.

Antibodies to lipids are a main characteristic 
of MS patients
Myelin consists mainly of lipids, being the most 
abundant, cholesterol, PC, sphingomyelin, cere-
brosides, and sulfatide.56,57 Ganglioside (GD) are 
also main components of myelin and axolemma, 
especially at the node of Ranvier.58,59 Moreover, 
glycolipid composition is particular of every glial 
cell subset, GD2 is characteristic of mature oligo-
dendrocytes, and GD1and GD3 are present on 
their precursors.60

Consequently, numerous researchers have been 
working to develop new diagnosis techniques and 
to detect antibodies to lipids in MS.

Enzyme-linked immunosorbent assays (ELISAs) 
demonstrated the high prevalence of antibodies 
to lipids in serum and CSF samples from MS 
patients (Table 1). They recognize a broad spec-
trum of gangliosides61 (aGM1,62 GM1,37,58,62–66 
GM237 GM3,37,63,64 GM4,37 GD1a,58,62–64,67 
GD1b,37,58,63 GD2,37,67 GD3,37,63,64,67 GT1a,37 and 
GTB37), sulfatide,37,58,64,68,69 cerebrosides,61,68,70 
phosphatidylinositol,68 cardiolipin,71,72 and 
cholesterol.68
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Table 1.  Analysis of the reactivity to lipids in CSF and serum samples from MS patients.

Author Antigen and positive patients (%) Lipid positive MS patients (%)

Acarin et al.62

(S)
aGM1 (24% IgG/IgM); GM1 (38% 
IgG/IgM); GD1a 33% (IgG/IgM)

48% of Total
36% RR IgG/IgM

33% SP IgG/IgM 100% PP IgG/IgM  

Sadatipour et al.63

(S)
GM1; GM3; GD1a, GD1b; GD3 2.9% RR IgG/IgM/

IgA/IgD
42.9% SP 56% PP  

Mata et al.58

(S)
GM1 (10% IgG); GD1a (23% IgG; 
10% IgM); GD1b (13% IgG; 6% 
IgM); Sulfatides (3% IgG; 7% 
IgM); Cardiolipin (3% IgG)

50% MALIGNANT 
IgG

6% BENIGN IgG  

(CSF) GM1 (7% IgM); GD1a (13%, IgG); 
Sulfatides (3% IgG, 16% IgM); 
Cardiolipin (20% IgM)

26% MALIGNANT 
IgG

6% BENIGN IgG  

Giovannoni et al.64

(S)
GM1; GM3; GD1a; GD3; GT1; GQ1; 
Sulfatides

 

Marconi et al.67

(S)
GD1a; GD2; GD3 30% of Total (IgM)

24.2% RR GD2+
50% SP GD2+ 26.7% GD2+  

Menge et al.70

(S)
Galactocerebroside <10% CIS 40% RR IgG 26.7% SP IgG <10% PP IgG

Jurewicz et al.68

(S)
Sulfatides; Galactocerebroside; 
Phosphatidylinositol; cholesterol 
(IgG/IgM)

RR  

Ilyas et al.69

(CSF)
Sulfatides 19.74% of Total 

IgG/IgM
15% RR

30% SP 14% PP  

Ivanova et al.37

(S)
GM1 (10% IgG/IgM); GM2; GM3; 
GM4; GD1a; GD1b; GD2; GD3; 
GT1a; GT1b; GQ1b; Sulfatides 
(33.3% IgG/IgM)

42.3% Ig/IgM
38.1% RR

51.4% SP  

Colaço et al.71

(S)
Cardiolipin (29.4% IgM) 29.4% IgM  

Lolli et al.72

(S)
Cardiolipin 2% IgG; 7% IgM  

(CSF) 5% IgG; 7% IgA, 
9% IgM

 

Mathiesen et al.65

(CSF)
GM1 (16.7% IgG) 16.7% IgG  

Marchiori et al.61

(CSF)
Gangliosides (19.2% IgG; 7.7% 
IgM); Cardiolipin (46.2% IgG; 
6.0% IgM); Galactocerebrosides 
(17.7% IgG; 11.8% IgM)

 

Bech et al.66

(S)
GM1 IgM  

Sádaba et al.73

(S)
Phosphatidylcholine (IgM) 88.2% CIS; 88.7% 

RR
58.0% SP 59.5% PP 11.1% BENIGN

aGM1, asialoganglioside; CIS, Clinically isolated syndrome; CSF, cerebrospinal fluid; GD, ganglioside D; GM, ganglioside M; GT, ganglioside T; GQ, ganglioside M; MS, 
Multiple sclerosis; PP, Primary progressive; RR, Relapsing-remitting; S, serum; SP, Secondary progressive.
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Interestingly, new microarray techniques showed 
the presence in the CSF of antibodies to lipids up 
to 60% of MS patients, being sulfatides the anti-
gens recognized in most cases.74–76

Nevertheless, the incidence of the antibodies to 
this lipids is lower compared with that of the 
OIgGBs,14,17,18,77 and these techniques are not 
currently used in the diagnosis of MS.73

Serum antibodies to PC are a diagnostic 
marker in MS
We developed a high sensitive ELISA to detect 
antibodies to lipids. We overcame the difficulties 
regarding the antigen solubility, accessibility of 
reactive groups, and the requirement of auxiliary 
lipids.

This assay demonstrated the upregulated concen-
tration of IgMPC in serum samples from MS 
patients. More interesting, almost 90% of MS 
patients in the first stages of the disease, clinical 
isolated syndrome (CIS) or relapsing remitting 
MS, had serum IgMPC. However, a minimum 
percentage of benign patients and control group 
showed serum IgMPC73 (Figure 1).

The sensitivity of our new assay is similar to the 
best obtained using the detection of OIgGBs, the 

gold standard for the diagnostic of MS at the 
moment. In other words, the detection of IgMPC 
in serum samples is a diagnostic marker in this 
disease and has numerous advantages compared 
with the detection of OIgGBs.73,78 It is an easily 
reproducible technique; it can be automatable, 
and it does not use CSF.

Antibodies to lipids are a prognosis marker
Different reports demonstrated the higher preva-
lence of antibodies to gangliosides in the progres-
sive forms than in the first stages of the disease.62,63 
In this line, it was also published that a significant 
percentage of MS patients with malignant course 
have IgG to gangliosides, sulfatides, and cardi-
olipin in serum and CSF.58 However, other 
authors did not find this correlation, and the role 
of the antibodies to these antigens as prognosis 
biomarker remains unclear.

Intrathecal IgM synthesis correlates with a severe 
disease course of the disease.79–82

The most sensitive assay to detect intrathecal IgM 
synthesis83 demonstrated the presence of oligo-
clonal IgM bands (OIgMBs) in CSF in approxi-
mately 45% of the MS patients.84 Patients with 
OgIgMBs predict the conversion to clinically 
defined MS and a rapid progression. We observed 

Figure 1.  Percentage of positives (white bars) or negatives (squared bars) for IgMPC in MS patients in the first 
stages of the disease (CIS or RR) or benign form and control group. The percentage of positives for IgMPC was 
higher in patients in the first stages of the disease (88.5%) than in patients with the benign form (11.1%) and 
control group (25%)
Modified from Sádaba et al.73

CIS, clinical isolated syndrome; IgMPC, IgM to phosphatidylcholine; MS, multiple sclerosis; RR, relapsing remitting.

https://journals.sagepub.com/home/tan


I Sánchez-Vera, E Escudero et al.

journals.sagepub.com/home/tan	 5

that these immunoglobulins recognized phospholip-
ids and glycolipids, being PC the antigen recognized 
in most cases.85 Patients with OIgMBs to lipids 
have a poor prognosis, with higher rate of relapses, 
faster increase of disability, remarkable brain atro-
phy and lesion load, and early development of the 
secondary progressive phase.85–90 Currently, the 
detection of OIgMBs to lipids is the most sensitive 
biomarker for the prognosis of MS.91,92

Nevertheless, the sensitivity to detected IgM in 
CSF varies among laboratories,92 as described for 
the detection of OIgGBs, and some authors did 
not observe relation between the presence of 
OIgMBs and the progression of the disease.93–95

However, using our reproducible and high sensi-
tive ELISA, we observed that most of the benign 
MS patients did not have serum IgMPC.77

Antibodies to lipids are pathogenic
The increased concentration of IgM in CSF is 
related with the MRI lesion load,79 and the pres-
ence of antibodies to lipids in CSF87 and serum45 
correlates with brain atrophy.

The presence of OIgMBs in MS patients corre-
late with increased percentages of B1-lymphocytes 
in CSF and blood,85,88,96 the B cells subset pro-
ducer of antibodies to lipids. Moreover, the 
increased number of B1-lymphocytes in periph-
eral blood predicts the conversion to MS in those 
patients with an unclear diagnosis,41 demonstrat-
ing the pathogenic role of this cells.

The histological studies also demonstrated the 
pathological role of antibodies to lipids and B 
cells. We observed in brain samples from MS 
patients, IgM deposits colocalizing with comple-
ment cascade factors, which in turn could medi-
ate the lysis of oligodendrocytes and axons, and 
the phagocytosis of debris by activated mac-
rophages.97 In fact, IgM deposits colocalize with 
oligodendrocyte and axonal damage.98 In this 
line, other authors also demonstrated that anti-
bodies are the main characteristic of new forming 
lesions.99 Corroborating the data obtained in 
CSF and serum, we also observed that the activity 
of the lesions is related with the number of B cells 
and plasma cells in the perivascular space and 
meninges.98

Other authors demonstrated that IgM anti-sulfa-
tide or anti-galactocerebroside from MS patients 
recognize oligodendrocytes and myelin, causing 
demyelination ‘in vitro’ and ‘in vivo’.100

Moreover, immunization of experimental animals 
with lipids or antibodies to lipids causes the devel-
opment of experimental autoimmune encepha-
lomyelitis. These models demonstrated that 
antibodies are necessary to induce similar pathol-
ogy to that observed in humans.74,101–106

Antibodies to lipids predict the response  
to disease modifying treatments
Treatments do not cure the disease but delay the 
progression in most cases. Unfortunately, a con-
siderable percentage of patients do not respond to 
the first-line therapies or suffer from important 
side effects.107–109 Currently, the response or not 
to treatment is identified based on the occurrence 
of new relapses or the increase of disability. This 
is problematic because as the disease progress, 
patients do not recover completely the neurologi-
cal function after the relapse. Thus, numerous 
researches aimed to characterize biomarkers of 
response to treatment, and thus, to develop per-
sonalized therapies, improving their effectiveness 
while minimizing adverse events.

Recently, we observed that the rapid decrease of 
serum IgMPC is a biomarker of response to 
interferon-β (Figure 2(a)). Most of responders to 
Rebif® (Merck) (83.3%) or Betaferon® (Bayer) 
(85.7%) showed a diminution of serum IgMPC 
after 6 months of treatment [Figure 2(b)].

Some patients who did not respond to interferon-
β were treated with natalizumab. We demon-
strated that those with the highest levels of IgMPC 
responded subsequently to natalizumab.78 This 
was expected because these patients have an 
aggressive course, with more relapses and faster 
increase of the disability, and they do not respond 
to first-line therapies.78

Natalizumab prevents the migration of lympho-
cytes through the blood–brain barrier, but, as we 
and other groups demonstrated, there are resi-
dent immune cells in the central nervous sys-
tem.98,110,111 Regarding this, natalizumab does 
not eliminate completely the presence of OIgMBs 
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in CSF,112 that, as described above, could play a 
main role in the tissue damage.

To predict the response to first-line therapies and 
natalizumab is of great interest to initiate the treat-
ment of natalizumab as soon as possible, and thus to 
avoid the migration to the central nervous system of 
lymphocytes and the progression of the disease.

Conclusions
The detection of serum IgMPC is of great utility 
for the rapid diagnosis of MS and thus to treat the 
patients earlier. The later avoids the progression 
of the disease, but a considerable percentage of 
patients do not respond to first or second-line 
therapies. The levels of serum IgMPC predict the 
response to interferon-β and natalizumab. Thus, 
the quantification of these immunoglobulins is of 
great interest to decide when to change to a 

second-line treatment and then, the best thera-
peutic option.
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