1	
2	Flow cytometry has a significant impact on the cellular metabolome
3	
4	Aleksandra Binek ¹ ‡, David Rojo ² ‡, Joanna Godzien ² , Francisco Javier Rupérez ² , Vanessa
5	Nuñez ¹ , Inmaculada Jorge ^{1,3} , Mercedes Ricote ¹ , Jesús Vázquez ^{1,3} , Coral Barbas ² *
6	
7	¹ Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain ¹
8	² Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU
9	San Pablo, Campus Montepríncipe, Madrid, Spain
10	³ CIBER de Enfermedades Cardiovasculares (CIBER CV), Madrid, Spain
11	
12	‡These authors contributed equally to this work
13	* Correspondence and requests for materials should be addressed to:
14	
15	Coral Barbas (cbarbas@ceu.es)
16	Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia
17	Universidad CEU San Pablo, Campus Montepríncipe
18	Boadilla del Monte
19	28668 Madrid, Spain
20	

22 ABSTRACT

23	The characterization of specialized cell subpopulations in a heterogeneous tissue is
24	essential for understanding organ function in health and disease. A popular method of cell
25	isolation is fluorescence-activated cell sorting (FACS) based on probes that bind surface or
26	intracellular markers. In this study, we analyse the impact of FACS on the cell metabolome
27	of mouse peritoneal macrophages. Compared with directly pelleted macrophages, FACS-
28	treated cells had an altered content of metabolites related to the plasma membrane,
29	activating a mechanosensory signalling cascade causing inflammation-like stress. The
30	procedure also triggered alterations related to energy consumption and cell damage. The
31	observed changes mostly derive from the physical impact on cells during their passage
32	through the instrument. These findings provide evidence of FACS-induced biochemical
33	changes, which should be taken into account in the design of robust metabolic assays of
34	cells separated by flow cytometry.
35	

36

37 KEYWORDS

- 38 Sorting, sorted cells, metabolome profile, fluorescence activated cell sorting (FACS), LC-
- 39 MS, CE-MS, GC-MS, metabolomics, multiplatform analysis

40 INTRODUCTION

The functional properties of any tissue are always the product of the contributions of its 41 specialized cells. Analysing the molecular profiles of these cell types usually requires the 42 isolation of functionally homogeneous cell subpopulations using methods compatible with 43 subsequent analytical approaches. Fluorescence-activated cell sorting (FACS) is one of the 44 45 most routinely used and well-established procedures for isolating and counting cell populations before further procedures such as cell culture¹⁻³, metabolic assay^{1, 2}, mRNA 46 expression analysis^{1, 4, 5}, phenotypic characterization^{2, 4}, and other high-throughput 47 approaches^{6, 7}. Since its introduction in the 70s⁸, the research applications of FACS have 48 been broad, and have recently included metabolic characterization^{2, 4, 9-12}. The core cell 49 phenotype assays include the assessment of glycolytic activity from glucose 50 51 concentrations, together with functional evaluations (cell motility, accumulation or 52 distribution), and mRNA/protein expression quantifications. Enhanced glycolysis has been shown to influence endothelial-cell glucose availability in FACS-sorted hypoxic tumour-53 54 associated macrophages harvested from tumour-bearing mice². In another example of 55 metabolic characterization, the levels of ribose-5-phosphate, ribulose-5-phosphate, and 56 glutathione (with detection of significant changes in all 3 metabolites) were measured in 57 sorted CD8+ T cells by high throughput metabolomic profiling⁴. Despite the ability of FACS to isolate specific cell populations, it remains unclear to what extent the sorting process 58 itself induces changes in cell function. 59

60 The cell metabolome responds rapidly and dynamically to external alterations, and 61 metabolomics is thus the most suitable approach to assessing the effect of FACS-triggered

62	stimuli. Using cellular cultures, two studies have partially evaluated the impact of FACS on
63	cell metabolism ^{13, 14} . Roci <i>et al</i> . (2016) ¹³ have focused on the traceability of certain polar
64	isotopically labelled-metabolites, comparing extracted cell from a dish, pelleted cells and
65	sorted cells. Meanwhile, oxidative stress has been the centre of the research by Llufrio et
66	al. (2018) ¹⁵ , comparing quick quench, delayed-quench and sorted cells. Here, we present
67	a systematic evaluation of the impact of FACS analysis on cell metabolism, using
68	peritoneal macrophages from mice as a cell model, which better mimics the
69	circumstances applicable in an <i>in vivo</i> experiment. We used a multiplatform mass
70	spectrometry (MS) approach, maximizing metabolite coverage by combining liquid
71	chromatography (LC), capillary electrophoresis (CE), and gas chromatography (GC) as
72	separation techniques. We show that, compared with direct pelleting of peritoneal lavage,
73	FACS sorting of peritoneal macrophages alters around 10% of metabolic features, most of
74	them associated with the flow cytometry process and not the immunostaining. Changes
75	observed in our data could be attributed to the physical stress of cell sorting, which in turn
76	might induce a mechanosensory signalling cascade that alters the abundance of
77	glycerophospholipids, fatty acyls, fatty acid esters, amino acids (and derivatives),
78	glycerolipids, and sphingolipids. The overall effect can be interpreted as a mechanically
79	induced inflammatory-like status involving calcium (Ca ²⁺) signalling ¹⁶⁻¹⁹ and
80	mechanosensitive phospholipase A2 (PLA2) translocation to the cell membrane ^{20, 21}
81	together with energy consumption and cell damage, potentially compromising cell
82	homeostasis. These and previous studies ^{2, 14, 22} results demonstrate that the cell sorting

- 83 process itself induces marked changes in the cell machinery that may interfere with the
- 84 molecular processes being analysed.

86 METHODS

Study design. Four experimental group of thioglycollate-induced peritoneal macrohpages 87 were prepared, with 5 biological replicates each (n=20) (Figure 1). In total, 20 animals (10 88 females and 10 males) were sacrificed to produce sufficient peritoneal macrophages for 89 metabolome fingerprinting (Supplementary Table S1). Sample size was chosen based on 90 91 the number of cells necessary to perform high quality metabolite extraction and 92 multiplatform MS analysis. Samples were normalized by adding an extraction volume proportional to the mass of the cell pellet. The cell number necessary to perform the 93 94 metabolomics experiments was estimated to produce a dry cellular pellet weight within the range 30-100mg, an amount that represents the protocols applied by different 95 groups²³⁻²⁶. The exact cell number used for the metabolite extraction is specified in 96 97 Supplementary Table S1. No animal randomization was performed in assigning 98 experimental groups. The control experimental group (Ctrl) was composed of peritoneal 99 lavage pelleted cells immediately snap-frozen in liquid nitrogen (liq. N_2) upon isolation. 100 The antibody sample group (Ab) consisted of peritoneal macrophages subjected to 101 immunostaining and subsequently stored in liq. N₂ without sorting. The sorted sample 102 (Sort) consisted of freshly isolated macrophages immediately analysed by flow cytometry 103 without antibody labelling and with sorting of the complete cell population into the 104 collection tube. For the antibody-stained and sorted sample (Ab+Sort), the freshly isolated cells were immunostained and then sorted by flow cytometry, with collection of the 105 106 complete cell population. No subpopulations were isolated in order to ensure that sample 107 composition remained comparable to the Ctrl and Ab groups and to identify biochemical

2 3	108	changes induced solely by the sorting process. After collection, cells from the Sort and
4 5 6	109	Ab+Sort group were pelleted, frozen in liq. N ₂ , and stored at -80°C until fingerprinting
7 8	110	analysis
9	110	
10 11 12	111	Animals. C57BL/6 mice were provided by Charles River. Mice were housed under identical
12 13 14	112	environmental conditions, including feeding, light, and temperature. All animal
15 16	113	procedures were approved by the Experimental Animal Use Committee of the Instituto de
17 18 10	114	Salud Carlos III and were in accordance with the EU Directive 86/609.
20 21	115	Peritoneal macrophages isolation and flow cytometry. The isolation protocol and flow
22 23	116	cytometry are detailed in Supplementary Methods.
24 25 26	117	Reagents and standards for metabolomics. Reagents and standards are detailed in
27 28	118	Supplementary Methods.
29 30 31	119	Metabolite extraction and sample treatment. Since biological replicates differed slightly
32 33	120	in cell number, the extraction solvent volume was calculated according to the cell pellet
34 35	121	mass, thus ensuring between-sample normalization of metabolite concentrations
30 37 38	122	(Supplementary Table S1). On the day of analysis, cell pellets were thawed and doubly
39 40	123	extracted by sequential additions of i) MeOH:MTBE (4:1, v/v) and ii) MeOH:H ₂ O (4:1, v/v).
41 42 43	124	Each solvent addition was followed by 3 cycles of freeze/thawing (liq. N_2 /cold-water bath,
44 45	125	10 s), sonication (15 W, 6 min), vortexing (1 min), and centrifugation (16,000 g, 10 min,
46 47	126	4°C). Equal volumes of the supernatants from i and ii were then mixed and aliquoted for
48 49 50	127	subsequent analysis. Details about the sample treatment per analytical platform can be
51 52	128	found in Supplementary Methods.
53 54		
55		
56		
57		

Preparation of quality controls (QCs). QC samples are required at the beginning of the 129 130 sequence to stabilize the system and throughout the analytical runs at periodic intervals to monitor variations in signals over time. Individual QC samples were therefore prepared 131 independently for each analytical platform by pooling and mixing equal volumes of each -132 sample. After gentle vortexing, the mixes were transferred to analytical vials. Detailed 133 134 information about the injection order and the number of blanks and QCs used to stabilize each analytical platform can be found in Supplementary Methods. 135 *Metabolomic fingerprinting*. To maximize metabolite coverage, samples were run on 3 136 137 analytical platforms: general and lipidomic (adapted from Whiley et al. (2012)²⁷) LC-ESI-QTOF-MS methods, CE-ESI-TOF-MS, and GC-EI-Q-MS (using the FiehnLib²⁸ and NIST 14 138 libraries). Detailed methodology can be found in Supplementary Methods. 139 140 Metabolomic data treatment, statistical analysis, and identification. In LC-MS and CE-MS, data were deconvoluted with the Molecular Feature Extraction algorithm in the 141 MassHunter Qualitative Analysis software (B.06.00, Agilent). Raw data were aligned with 142 143 Mass Profiler Professional (version 13.0, Agilent). In GC-MS, deconvolution and 144 identification were performed using MassHunter Quantitative Unknowns Analysis 145 (B.07.00, Agilent), data were aligned with MassProfiler Professional (version 13.0, Agilent) 146 and peaks were integrated using MassHunter Quantitative Analysis software (version B.07.00, Agilent). Metabolite identification was based on the FiehnLib²⁸ and NIST 14 147 libraries. 148 149 In order to perform the differential analysis on the metabolomics data, in all the platforms

the raw variables were then filtered according to a modification of the filtering criteria

151	proposed by Godzien <i>et al.</i> (2014) ²⁹ : variables present in at least 50% of the samples of
152	each experimental group and either i) present in at least 80% of the QCs that yielded a
153	variation coefficient <30% or ii) present in <20% of the QCs. Principal component analysis
154	(PCA) models (Supplementary Figure S1) were subsequently built using the SIMCA-P+
155	software (12.0.1.0, Umetrics, Sweden). For each PCA, R ² (fraction of the explained
156	variance of the model) is reported in Supplementary Figure S1. Next, after replacement of
157	missing values by k-means nearest neighbour analysis according to the criteria of Armitage
158	et al. (2015) ³⁰ , the Mann-Whitney U test was used for all comparisons (i.e., Ctrl vs Ab; Ctrl
159	vs Sort; and Ctrl vs Ab+Sort) followed by the Benjamini-Hochberg post hoc correction (p <
160	0.05). Missing values were imputed and statistical comparisons made using in-house built
161	scripts for MATLAB (7.10.0.499, MathWorks, Natick, MA, USA). In LC-MS and CE-MS, the
162	resulting list of accurate masses that significantly differed between groups was searched
163	using the CEU Mass Mediator search tool (<u>http://biolab.uspceu.com/mediator</u> ; error ± 5
164	ppm) to obtain tentative identifications, taking into account mass accuracy, possibility of
165	ion formation and adducts formations. Each identification was then manually curated
166	based on MS adducts ³¹ for lipids identified by LC-MS (MS/MS validated criteria ³²) and on
167	the in-source fragmentation pattern ³³ for metabolites identified by CE-MS. When
168	appropriate, the elution order was considered in order to discard spurious identifications.
169	The number of hits per analytical platform that passed each step is listed in
170	Supplementary Table S2. The biological role of identified compounds was evaluated and
171	irrelevant identifications such as pesticides, drugs, or impossible chemical structures were
172	excluded. In the final list (Supplementary Table S3), metabolites are reported according to

173	the criteria of the Metabolomics Standards Initiative ^{15, 34} , with a confidence level in grade
174	1 (identified metabolites) (GC-MS) or grade 2 (putatively annotated compounds) (LC-MS
175	and CE-MS). Variation between experimental conditions is reported as log_2 FC, always
176	relative to control, and will be referred to as FC in the rest of the text.
177	To assess the complete metabolite profile, in all the platforms the raw variables were then
178	filtered based on a 100 % presence per group and the subsequent list searched using the
179	CEU Mass Mediator search tool (<u>http://biolab.uspceu.com/mediator</u> ; error ± 5 ppm) for
180	LC-MS and CE-MS data. This dataset was considered the full detected metabolic profile.
181	The number of annotated hits per analytical platform is listed in Supplementary Table 2.
182	Hierarchical clustering analysis (HCA) The MetaboAnalyst online platform
183	(http://www.metaboanalyst.ca/) ³⁵ was used for HCA analysis of the metabolites
184	represented in Figure 3 and Supplementary Figures S4 and S5. No normalization algorithm
185	was applied to the data. The datasets were scaled using the auto scaling feature in the
186	program (mean-centred and divided by the standard deviation of each variable) and
187	graphically represented as heatmaps.
188	Metabolic pathways over-representation analysis The MetaboAnalyst Pathway Analysis
189	node (<u>http://www.metaboanalyst.ca/</u>) ³⁵ was used to perform the analysis. The selected
190	analysis method of over-representation was hypergeometric test.
191	Data availability. Mass spectrometry data from this study were deposited to the
192	publically available MetaboLights repository (<u>https://www.ebi.ac.uk/metabolights</u>) with

the data set identifiers MTBLS633, MTBLS634, MTBLS631 and MTBLS629.

RESULTS AND DISCUSSION

196	Overall impact of flow cytometry on the metabolome
197	A multiplatform fingerprinting experiment was conducted to assess if the
198	immunostaining and flow cytometry induced metabolic alterations in mouse peritoneal
199	macrophages. To assess the effect of each possible source of alterations individually, we
200	designed an experiment to evaluate the effect of immunostaining (Ab), flow cytometry
201	(Sort), and the both elements in combination (Ab+Sort) with respect to control (Ctrl)
202	(Figure 1). Principal components analysis (PCA) established a major distinction between 2
203	sample blocks respectively integrated by i) Ab and Ctrl and ii) Sort and Ab+Sort
204	(Supplementary Figure S1).
205	Studying the sample clustering following a deduction approach ³⁶ , the grouping of
206	the Ab experimental group with Ctrl in sample block i suggests that immunostaining has
207	only a minor impact on the metabolome. Only PCA of capillary electrophoresis-mass
208	spectrometry (CE-MS) data (Supplementary Figure S1c) revealed a slight distinction
209	between them. Conversely, the clustering in sample block ii indicates that similar
210	metabolic alterations take place in the Sort and Ab+Sort experimental groups, suggesting
211	an effect of the flow cytometer instrumentation. A total of 4418 annotable metabolic
212	features were detected, present in all samples in each group; of the total, 409 features
213	showed alterations (9%). Relative to Ctrl samples, Ab samples showed induced changes in
214	only 8 features, whereas Sort altered 290 features and Ab+Sort 268. Details on the
215	number of the metabolic features passing each filtering criteria are shown in
216	Supplementary Table S2. The PCA analysis revealed that the main origin of the metabolic

217	disturbances was the flow cytometry procedure and not the immunostaining
218	(Supplementary Figure S1g). The numbers of altered metabolites with an annotated
219	identification in each analytical platform were as follows: LC-MS (positive and negative
220	polarity, general and lipidomic gradient), 340 (225 Ctrl vs Sort, 225 Ctrl vs Ab+Sort); CE-
221	MS, 57 (8 Ctrl vs Ab, 57 Ctrl vs Sort, 31 Ctrl vs Ab+Sort); and GC-MS, 12 (8 Ctrl vs Sort, 12
222	Ctrl vs Ab+Sort). Note that the differences in the number of metabolites detected are
223	related to the technical specification and data treatment workflow of each analytical
224	platform.
225	Flow cytometry caused changes in around 10% of the identifiable metabolites,
226	most of them produced by exposure of cells to the intrinsic mechanical stimuli related to
227	the hydraulic system of the instrument, including stretch, pressure, and osmotic changes.
228	Multiplatform analysis validation
229	The robustness of the multiplatform analytical approach was demonstrated by the
230	tight clustering of the quality controls (QCs) in the nonsupervised PCA models (plotted in
231	Supplementary Figure S1). This confirms that among-group separation was due to real
232	biological variability and not analytical variance. Moreover, samples are almost evenly
233	clustered across analytical platforms.
234	Of the 409 altered metabolite features (Supplementary Table S2), 31 were found in
235	2 or 3 analytical platforms (Supplementary Figure S2). The LC-MS platforms detected 26
236	altered metabolites in common, the CE and LC platforms detected 5, and the GC and LC
237	platforms detected just 1. Only 2 compounds were co-detected by all 3 analytical
238	platforms. The detection of 345 altered metabolites (84%) with a single analytical

239	technique shows the importance of maximizing metabolite coverage with a multiplatform
240	approach. All co-detected metabolites (per comparison) confirm the trend of change (log $_2$
241	fold change (FC)) between analytical platforms, validating the multiplatform results
242	(Figure 2, complete set of box plots in Supplementary Figure S3). As demonstrated in
243	Figure 2, the metabolites were selected to illustrate several changes in various metabolite
244	classes with distinct physical and chemical properties. These results provide inter-platform
245	validation of downregulated high energy metabolism compounds (creatine, linoleyl
246	carnitine), nucleic acid metabolism (hypoxanthine, IMP) as well as an example of cellular
247	membrane structural components (lysophospholipids).
248	Biochemical nature of flow cytometry-induced metabolite alterations
249	Most of the alterations (71% of significantly changed metabolites) were directly
250	related to the sorting procedure (Supplementary Figure S1g), whereas 29% resulting from
251	the combined effect of immunostaining and FACS. Peptides (subgroup of the Human
252	Metabolome Database (HMDB) Sub Class amino acids, peptides, and analogues) were
253	excluded from this dataset and from further biochemical interpretations because peptide
254	abundances may be randomly affected by the partial deproteinization during metabolite

extraction (Figure 3b), which should be considered a potential limitation. The 10 most

abundant altered HMDB metabolite subclasses in the Sort vs Ctrl comparison were

257 glycerophospholipids, amino acids and derivatives, fatty acid esters, sphingolipids,

258 glycerolipids, carboxylic acids and derivatives, fatty acyls, fatty acids and conjugates,

259 purine ribonucleotides, and eicosanoids (Figure 3c). Similarly, the combination of Ab+Sort

vs Ctrl influenced the same biochemical classes in slightly different proportions (Figure 3c).

261 Mechanosensitivity translates into cell stress

The most prominent changes detected in the Sort and Ab+Sort conditions involve 262 bioactive lipid mediators, phospholipases, membrane excision by-products, and their 263 potential precursors. Arachidonic acid (AA), a 20-carbon omega-6 polyunsaturated fatty 264 acid (20:4, n-6) is esterified to glycerol in cell membranes, and its enzymatic hydrolysis 265 266 mediates the release of signalling and regulatory molecules. The Sort and Ab+Sort groups 267 showed alterations in AA-derived eicosanoids, including cyclooxygenase (COX)-derived prostaglandins (PGs) and lipoxygenase (LOX)-derived leukotrienes (LTs), as well as fatty 268 269 acyl and lineolic acid derivatives. FACS increased PG and LT precursors as well as other AA 270 oxygenation pathway products (eicosanoids of exact masses: 312.1739 Da, 322.2503 Da, 271 336.2297 Da, 338.2453 Da, 396.2876 Da, 405.2864 Da and 571.474 Da with the same 272 trend), suggesting consumption of the AA intermediate pool for further modifications in lipid mediator pathways (Figure 4 and Supplementary Table S3). Moreover, the Sort group 273 274 showed abundance changes in linoleic acid (LA) (18:2, n-6), another major lipid mediator 275 precursor (Figure 4). LA is processed into bioactive molecules by various COXs and LOXs 276 through a series of oxidations and stereoisomeric conversions³⁷. 277 The phospholipid hydrolysis induced by mechanical PLA2 activation liberates not 278 only AA, but also a variety of polyunsaturated fatty acids (PUFAs) such as 279 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), leaving lysophospholipids (LysoPC) as a by-product³⁸. DHA was found increased by sorting (Figure 4 and 280 Supplementary Table S3). The detected increased abundance of LysoPC (20:4) (Figure 4 281 282 and Supplementary Table S3) in the Ab-Sort group can also be considered a major source

Journal of Proteome Research

283	of AA, which then can be enzymatically scavenged further through the activity of
284	lysophospholipase (LPL) as one possible AA metabolic pathway.
285	Our results also show an effect of sorting on the activity of other phospholipases.
286	While PLA2 releases AA in a single-step reaction, phospholipase C (PLC) and D (PLD)
287	produce the AA-containing lipid products diacyglycerols (DG) and phosphatidic acids (PA),
288	respectively. Sorting decreased the abundance of the DG family members DG(44:12)
289	(depleted in Ab+Sort), DG(36:5) (FC -1.52), DG(36:2) (FC -1.64), DG(38:5) (FC -1.59),
290	DG(40:4) (FC -1.40), DG(42:8) (FC -1.60), DG(36:8) (FC -0.95), DG(P-32:1) (depleted in
291	Ab+Sort), DG(34:2) (FC -1.58), DG(36:4) (depleted in Ab+Sort), DG(38:7) (FC -1.39),
292	DG(38:4) (FC -1.54), DG(40:7) (FC -1.48), DG(42:10) (FC -1.32), DG(40:3) (FC -1.18), and
293	increased species DG(32:3) (appeared in Ab+Sort, when absent in Ctrl), DG(34:5) (FC 1.09
294	in Sort), altogether possibly reflecting PLC and DG lipase activity. PLC activity was
295	previously found to depend upon periodic mechanical stress, electrostatic potential, and
296	elastic stress of lipid membranes ³⁹⁻⁴¹ . The observed increase in DG consumption in FACS
297	sorted macrophages might be associated with PLC and DG lipase activities, which are
298	crucial in the biosynthesis of 2-arachidonoylglycerol (2-AG) ^{42, 43} , the AA precursor in the
299	endocannabinoid signalling pathway ⁴³ . The outcome is an inflammatory-like status
300	featuring increased energy consumption and cell damage, potentially compromising cell
301	homeostasis. The Sort and Ab+Sort groups also showed decreases in several PUFAs,
302	including anandamide (20:4, n=6) (AEA) (FC -3.87), anandamide (20:5, n=3) (EPEA) (FC -
303	3.88), and increase in anandamide (20:1, n=9) (FC 0.97). Moreover, Ab+Sort showed an

304	increase in the antiinflammatory mediator resolvin. These findings might suggest an effort
305	of cells to cope with inflammation-like conditions induced by the sorting process.
306	Another key finding is the marked change in the phospholipid profile of the cell
307	membrane. The decreased glycerophospholipid content in the Sort and Ab+Sort groups
308	could be explained by mechanical rupture of the plasma lipid bilayer and the activation of
309	phospholipases possibly hydrolysing the membrane phospholipid pool to release stress-
310	activated bioactive lipid mediators. For example, the decreased abundance in Sort and
311	Ab+Sort samples of highly unsaturated PC and PI species (≥4 double bonds: PC(36:5)
312	(depleted in Ab+Sort), PC(38:4) (FC -0.43), PC(38:7) (FC -3.20), PC(40:6) (FC -0.67), PC(40:7)
313	(FC -3.36), PC(42:6) (depleted in Ab+Sort), PC(44:6) (FC -1.03), PI(38:5) (FC -0.65), PI(40:4)
314	(FC -7.82), PI(42:4) (FC -1.06), and PI(36:5) (FC -1.02)) could be related to PLA2-mediated
315	intracellular cleavage of AA. In resting human monocytes, PC and PE typically constitute
316	the major reservoirs of AA (43% and 39% of total phospholipid AA, respectively), with a
317	lower AA content in PI (18%) ⁴⁴ . In a recent study, Balgoma <i>et al.</i> (2010) reported that
318	monocyte activation decreased the content of AA-containing PC and PI species while
319	having no effect on PE species ⁴⁴ . In another study, Shamsuddin <i>et al.</i> (2015) found that PI
320	are the primary source of AA-derived signalling eicosanoids ⁴⁵ . The observed changes in PC
321	and PI species in our study point into a direction of a possible consumption of highly
322	unsaturated phospholipids mediated by phospholipase activity. However, sorted mouse
323	peritoneal macrophages also showed decreased abundance of several PE species (PE(36:5)
324	(FC -0.64), PE(38:4) (FC -0.99), PE(38:5) (FC -0.80), PE(38:6) (FC -0.84), PE(38:7) (FC -0.93),
325	PE(40:4) (FC -1.15), PE(40:5) (FC -1.10), PE(40:6) (FC -0.84), PE(40:7) (depleted in Sort), and

326	PE(40:9) (depleted in Sort)). These results were also confirmed in the biological pathways
327	over-representation analysis that showed phosphatidylcholine and
328	phosphatidylethanolamine biosynthesis pathways being substantially impacted by sorting
329	(Supplementary Figure S4). Several lyso-PE and lyso-PC forms were also altered, with a
330	general tendency to decrease (Figure 4 and Supplementary Table S3). Lysophospholipids
331	are produced by the enzymatic action of membrane phospholipases. Interestingly, Lyso-
332	PE(24:6) was the only PE species increased in the Sort and Ab+Sort groups and was
333	completely absent in Ctrl macrophages (Figure 4), it might be considered as a potential
334	new intermediate source of PUFAs. In addition to PE, PI, and PC species and lysolipids,
335	sorting also induced a marked downregulation in several phosphatidylserine (PS) species
336	(Figure 4 and Supplementary Table S3). PS are glycerophospholipids, accounting for 10%-
337	20% of the total phospholipid content of the plasma membrane and playing crucial roles
338	in nonspecific electrostatic interactions ⁴⁶ and apoptosis ⁴⁷ .
339	The flow cytometry procedure also triggered depletion of several gangliosides and
340	sphingomyelins (SM) (Figure 4 and Supplementary Table S3). Gangliosides are
341	glycosphingolipids with a sugar side chain that modulates cell signal transduction events in
342	the cell plasma membrane ⁴⁸ . The abundance decrease in several SM species (SM(d40:2),
343	SM(d40:3), SM(d42:1) and SM(d44:2)) may be related to sphingomyelinase (SMase)
344	mechanoactivation, which is known to initiate the generation of ceramides (Cer) ^{49, 50} .
345	Consistent with this idea, the decreased abundance of SM(d40:2), SM(d42:1)) in the Sort
346	group coincided with increased abundance of in the corresponding ceramides Cer(d40:2)
347	Cer(d42:1) (Figure 4 and Supplementary Table S3). Ceramides play roles in the

biosynthesis of glycosphingolipids and gangliosides, lipid bilayer components and are
 important inducers of apoptosis^{51, 52}. Another FACS-upregulated lipid species was
 phytosphingosine (FC 2.34), which is involved in diverse cell processes, including cell-cell

- interaction, proliferation, differentiation, and apoptosis⁵³.
- 352 **Depleted cell energy generation and storage**

353 Energy metabolism is directly linked to the maintenance of cell homeostasis. Our 354 analysis indicated that FACS induces consumption of ATP and ADP (in agreement with Llufrio et al. (2018)¹⁴), correlating with AMP accumulation (FC 0.55) and depletion of 355 356 adenosine, creatinine (FC -1.62), and creatine (FC -2.2), the main compounds involved in 357 ATP recycling (Supplementary Table S3). These alterations were also reflected in the 358 metabolic pathways over-representation analysis that indicated FACS impact on purine 359 metabolism (Supplementary Figure S4). An increased energy demand in Sort and Ab+Sort groups is also suggested by an imbalance in the tricarboxylic-acid cycle, with decreased 360 361 levels of citrate/isocitrate (FC 1.44), aconitate (depleted), malate (FC -1.62), fumarate (FC -362 5.31), and related compounds as succinic semialdehyde (FC -1.91) and succinic anhydride 363 (depleted). Moreover, FACS also decreased peritoneal macrophage levels of glucose (FC -364 1.47) and maltose (FC -2.18), consistent with consumption of the polysaccharide 365 precursors UDP-glucose, UDP-galactose, and UDP-galactofuranose (FC -1.43). The parallel depletion of niacinamide (FC -2.19) (also in Llufrio et al. (2018)¹⁴) could indicate its 366 potential use to synthesize NAD. Sorted cells also showed a clear alteration in lipid β -367 oxidation, manifested as a depletion in 12 and significant decrease in additional 11 368

369 carnitine-conjugated species (FCs in Supplementary Table S3 and in metabolic pathways

370 over-representation analysis, Supplementary Figure S4).

371 Signatures of cell damage

Sorting increased the cell content of ADP-ribose, which is involved in the detection 372 and signalling of single-strand DNA breaks typically caused by metabolic or chemical 373 damage or radiation exposure⁵⁴. This was matched by accumulation of the ribose 374 derivatives, ribose 1-P and ribose 5-P which are structural components of DNA and RNA. 375 Possible damage to the genetic material was also supported by the observed decrease of 376 377 acetyl adenylate levels (FC -1.91), a metabolite involved in non-enzymatic histone 378 acetylation⁵⁵. In addition, sorting probably induced an increase in cellular oxidative stress. 379 Glutathione, the main cellular antioxidant agent, was found decreased (FC -2.4), as were 380 ornithine (FC -1.06), proline (FC -1.2), citrulline (FC -1.39), acetylspermidine (FC -2.08) and S-glutathionycysteine (FC -1.88), all of which are necessary for glutathione synthesis via 381 382 the polyamine pathway. Consistent with these findings, sorting also decreased histidine 383 (FC -1.36), whose imidazole ring has the capacity to scavenge reactive oxygen species 384 (ROS)^{22, 56}. Moreover, many PC and PE species were detected in their oxidized forms (sn-1 385 position ether bond) in sorted macrophages (PE-O and PC-O species FCs in Supplementary 386 Table S3). Increased PC and PE oxidation could indicate upregulated synthesis of carboxy-387 ethyl-hydroxy-chroman (alpha and gamma-CEHC) (FC 0.80 and FC 3.38) antioxidants (for complete list of all PC and PE species see Supplementary Table S3). The overall imbalance 388 in nucleic-acid related metabolites and the potential oxidase/antioxidant imbalance 389 390 suggest cell damage due to increased ROS production upon exposure of cells to laser

391	radiation during FACS. These findings are in agreement with Llufrio <i>et al.</i> $(2018)^{14}$, who
392	have detected that FACS significantly increases the ratio of oxidized/reduce glutathione as
393	well as ROS.
394	Sorting vs Ab-Sorting
395	In general, the Ab+Sort procedure had substantial impact on macrophage
396	metabolism beyond that induced by sorting alone (see Figure 3a and 3c). Of the 251
397	annotated metabolites significantly altered by Ab+Sort, 142 are also affected in the Sort
398	group (Supplementary Figure S1g). A closer inspection clearly revealed a shared pattern of
399	change within this group of annotated metabolites in the Ab+Sort and Sort groups,
400	identifying 2 highly characteristic clusters (Figure 3a and Supplementary Figure S5). In
401	both comparisons, metabolites showing a decrease in the Ab+Sort and Sort groups are
402	generally related to energy metabolism, including energy source catabolism, storage, and
403	transfer. This subset includes carnitine and its derivatives (butyrylcarnitine,
404	hexadecenoylcarnitine, hexanoylcarnitine, octanoylcarnitine, and eicosanoyl carnitine)
405	from the carnitine shuttle, which is responsible for transferring long-chain fatty acids
406	across the inner mitochondrial membrane to access the beta-oxidation enzymes.
407	Moreover, this cluster includes energy sources such as DG compounds (DG(38:4),
408	DG(40:7), DG40:3), DG(38:7), etc.) and ADP and membrane-integrity-related
409	glycerophospholipids (PE(40:5), PE(34:1), PC(40:6, PS(32:0), and others), Figure 3a and
410	Supplementary Figure S5.
411	A second large cluster of annotated metabolites showed sorting-induced increases
412	in both comparisons. These metabolites include AMP (derived from ATP hydrolysis) and

413	propionyl carnitine (formed by the action of carnitine acetyltransferase during the β -
414	oxidation of odd-numbered fatty acids), possibly reflecting the accumulation of energy
415	consumption by-products. Sorting also upregulated a group of AA metabolites involved in
416	LT synthesis. These metabolites derive from PUFAs that undergo series of oxidations
417	through the action of COX and LOX. Since the lipid mediator precursors of these pathways
418	are rapidly converted, it is likely that the two metabolites share similar activities.
419	Upregulation of these annotated metabolites reflects activation of cell inflammatory
420	responses. The second cluster also included several glycerophospholipids (LysoPE(24:6),
421	PC(O-44:5), PC(36:4), PC(36:6)), sphingolipids, 2 ceramides (Cer(d40:2) and
422	Cer(d46:0(2OH))/Cer(t46:0)), and a few short-chain and medium-chain fatty acids (4-oxo2-
423	nonenal, 2-aminotridecanoic acid, 11-aminoundecanoic acid), Figure 3a and
424	Supplementary Figure S5.
424 425	Supplementary Figure S5. A total of 109 annotated metabolites were significantly altered only in the Ab+Sort
424 425 426	Supplementary Figure S5. A total of 109 annotated metabolites were significantly altered only in the Ab+Sort group (Supplementary Figure S1g). This compound subset may reflect a synergistic effect
424 425 426 427	Supplementary Figure S5. A total of 109 annotated metabolites were significantly altered only in the Ab+Sort group (Supplementary Figure S1g). This compound subset may reflect a synergistic effect of the immunostaining protocol and mechanical impact of the instrument on cell
424 425 426 427 428	Supplementary Figure S5. A total of 109 annotated metabolites were significantly altered only in the Ab+Sort group (Supplementary Figure S1g). This compound subset may reflect a synergistic effect of the immunostaining protocol and mechanical impact of the instrument on cell metabolism. Clustering analysis revealed that metabolites that were significantly
 424 425 426 427 428 429 	Supplementary Figure S5. A total of 109 annotated metabolites were significantly altered only in the Ab+Sort group (Supplementary Figure S1g). This compound subset may reflect a synergistic effect of the immunostaining protocol and mechanical impact of the instrument on cell metabolism. Clustering analysis revealed that metabolites that were significantly decreased in Ab+Sort showed the same tendency in Sort, but with lower significance
424 425 426 427 428 429 430	Supplementary Figure S5. A total of 109 annotated metabolites were significantly altered only in the Ab+Sort group (Supplementary Figure S1g). This compound subset may reflect a synergistic effect of the immunostaining protocol and mechanical impact of the instrument on cell metabolism. Clustering analysis revealed that metabolites that were significantly decreased in Ab+Sort showed the same tendency in Sort, but with lower significance (Supplementary Figure S6). The decreased metabolite cluster in Ab+Sort included carnitine
424 425 426 427 428 429 430 431	Supplementary Figure S5. A total of 109 annotated metabolites were significantly altered only in the Ab+Sort group (Supplementary Figure S1g). This compound subset may reflect a synergistic effect of the immunostaining protocol and mechanical impact of the instrument on cell metabolism. Clustering analysis revealed that metabolites that were significantly decreased in Ab+Sort showed the same tendency in Sort, but with lower significance (Supplementary Figure S6). The decreased metabolite cluster in Ab+Sort included carnitine derivatives, DG compounds, fatty acids, and glycerophospholipids (Supplementary Figure
424 425 426 427 428 429 430 431 432	Supplementary Figure S5. A total of 109 annotated metabolites were significantly altered only in the Ab+Sort group (Supplementary Figure S1g). This compound subset may reflect a synergistic effect of the immunostaining protocol and mechanical impact of the instrument on cell metabolism. Clustering analysis revealed that metabolites that were significantly decreased in Ab+Sort showed the same tendency in Sort, but with lower significance (Supplementary Figure S6). The decreased metabolite cluster in Ab+Sort included carnitine derivatives, DG compounds, fatty acids, and glycerophospholipids (Supplementary Figure S6). The Ab+Sort and Sort groups thus show a similarly severe downregulation of energy
424 425 426 427 428 429 430 431 432 433	Supplementary Figure S5. A total of 109 annotated metabolites were significantly altered only in the Ab+Sort group (Supplementary Figure S1g). This compound subset may reflect a synergistic effect of the immunostaining protocol and mechanical impact of the instrument on cell metabolism. Clustering analysis revealed that metabolites that were significantly decreased in Ab+Sort showed the same tendency in Sort, but with lower significance (Supplementary Figure S6). The decreased metabolite cluster in Ab+Sort included carnitine derivatives, DG compounds, fatty acids, and glycerophospholipids (Supplementary Figure S6). The Ab+Sort and Sort groups thus show a similarly severe downregulation of energy producing processes, but with the changes more pronounced in the Ab+Sort group

- 435 metabolites was principally increased in the Ab+Sort group (top block in Supplementary
- 436 Figure S6). The subset of signalling lipid molecules in this cluster differs slightly to that
- 437 increased in Sort. This effect may reflect the binding of antibodies in the Ab+Sort group to
- 438 a type C tyrosine protein phosphatase receptor (PTPRC or CD45)); interaction of the
- antibody-bound receptor with the cell membrane could cause additional stress and
- 440 enhance signalling activity in the vicinity of the membrane.

441 CONCLUSIONS

442	Our results provide strong evidence that FACS analysis alters cell metabolism,
443	triggering several phenomena linked to the physical stress cells undergo during sorting,
444	inducing increased energy consumption and eventual cell damage that may also be
445	related with the cellular starving caused by the resuspension of the cells in a pour nutrient
446	media during the flow cytometry. The plasma membrane is the sole physical barrier
447	separating cell components from the external environment and is an important reservoir
448	of signalling molecules, mechanosensitive Ca ²⁺ channels, and other membrane receptors
449	and receptor-coupled accessory proteins. During FACS, although the instrument-derived
450	mechanical stimuli do not markedly compromise bilayer integrity, the cleavage of several
451	membrane lipids is activated, triggering multiple stress-related pathways (Figure 5).
452	Several of the altered biochemical pathways involve phospholipases activated in response
453	to the mechanical stress exerted on the cell membrane. Translocation of
454	mechanosensitive PLA2 to the cell membrane $^{20, 21}$ is trigged both by mechanical pressure
455	and by increases in cellular Ca ²⁺ , indicating tight interconnection between Ca ²⁺ signaling
456	and AA metabolism. Ca ²⁺ is required for the enzymatic activation of the main PLA2
457	isoform. Cytosolic PLA2 associates with cell membranes in response to physiological Ca ²⁺
458	increases and selectively hydrolyses arachidonyl phospholipids ⁵⁷ .
459	Tension in the lipid bilayer plays a crucial role in sensory mechanotransduction and
460	directly activates a series of eukaryotic calcium-permeable cell membrane channels,
461	including members of the transient receptor potential (TRP) protein family ¹⁶⁻¹⁹ . Many TRP
462	family Ca ²⁺ channels are activated by osmotonicity and stress through their ability to sense

463	fluid flow ⁵⁸⁻⁶³ . TRP channels are also directly activated by AA and its metabolites ⁶⁴⁻⁶⁷ ,
464	completing the link between mechanical stimuli, AA signalling, and Ca ²⁺ signalling.
465	Intracellular Ca ²⁺ concentrations increase upon modulation of mechanically gated
466	membrane channels in response to physical stress, providing the necessary ion
467	environment for PLA enzymatic activity ^{20, 68, 69} .
468	All these pathways are linked to changes in cytosolic Ca ²⁺ concentration, produced
469	by the activation of Ca ²⁺ membrane channels by the osmotonic and mechanical stress
470	imposed during the passage of cells through the hydraulic system of the flow cytometer.
471	Moreover, our data suggests that sorting induces Cer release from the SM reservoir. SM is
472	an abundant constituent of the outer leaflet of the plasma membranes of mammalian
473	cells ⁷⁰ . SM hydrolysis by neutral SMase produces phosphocholine and Cer and has been
474	suggested as a major route for stress-induced Cer production ⁷¹ . The sorting-induced
475	changes in the SM and Cer pool thus might take place via the induction of plasma
476	membrane-bound, Mg ²⁺ -dependent, mechanosensitive SMase, which has been postulated
477	as an intracellular promoter of apoptosis ^{51, 52} and has also been linked to the extracellular
478	signal-regulated kinase 1 cascade and proinflammatory responses.
479	Our results highlight the need to include internal controls in FACS experiments to

FACS influence on cell phenotype, control and experimental groups should undergo the
same technical procedures, and particular attention should be paid to the technique-

480

assess the impact of cell sorting on the cells being isolated. To minimize the impact of

483 sensitive compounds identified here, especially when they form the focus of the research.

484 ASSOCIATED CONTENT

485 **SUPPORTING INFORMATION:**

- 486 The following supporting information is available free of charge at ACS website
- 487 http://pubs.acs.org
- 488 Supplementary Table S1 Metabolite extraction parameters. (PDF)
- 489 Supplementary Table S2. Number of metabolic features (raw or annotated compounds),
- 490 with an explanation after each workflow step. (PDF)
- 491 Supplementary Table S3. Compounds showing statistically significant FACS-induced
- 492 abundance changes, together with their annotated identifications. (XLSX)
- 493 Supplementary Figure S1. Principal component analysis (PCA) plots showing the effects on
- 494 the metabolome of immunostaining and flow cytometry. (PDF)
- 495 Supplementary Figure S2. Venn diagrams representing co-detected metabolites. (PDF)
- 496 Supplementary Figure S3. Box plots of cross-platform validation (all metabolites were
- 497 identified in 2 or more analytical approaches). (PDF)
- 498 Supplementary Figure S4. Impact on metabolic pathways in sorted mouse peritoneal
- 499 macrophages. (PDF)
- 500 Supplementary Figure S5. Hierarchical clustering analysis of annotated metabolites
- significantly altered in both the Sort and Ab+Sort groups. (PDF)

- 502 Supplementary Figure S6. Hierarchical clustering analysis of annotated metabolites
- significantly altered only in the Ab+Sort group. (PDF)
- 504 Supplementary Figure S7. FACS analysis of the peritoneal macrophage population isolated
- 505 from thioglycollate-injected BLC6 mice was performed with 5 biological replicates. (PDF)

506 AUTHOR INFORMATION

507 Corresponding Author

- ⁵⁰⁸ * Correspondence and requests for materials should be addressed to:
- 509 Coral Barbas (cbarbas@ceu.es)
- 510 Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia
- 511 Universidad CEU San Pablo, Campus Montepríncipe
- 512 Boadilla del Monte
- 513 28668 Madrid, Spain

514 Author contributions

- 515 The manuscript was written through contributions of all authors. All authors have given
- approval to the final version of the manuscript. A.B. and D.R. performed the metabolome
- analysis, interpreted data, and prepared the manuscript. C.B. and FJ.R. helped with
- 518 manuscript preparation and funding acquisition, and provided analytical and intellectual
- 519 input on the metabolome data. J.G. helped with metabolite identification. A.B. and V.N.

prepared the macrophage samples. J.V., M.R. and I.J. helped with the experimentaldesign.

522 Funding sources

- 523 C.B., FJ.R., J.G., and D.R. acknowledge funding from the Ministerio de Economía y
- 524 Competitividad (CTQ2014-55279-R). This study was also supported by Ministerio de
- 525 Economía y Competitividad grant BIO2015-67580-P through the Carlos III Institute of
- 526 Health (ISCIII) and the Fundación La Marató TV3 to J.V and to M.R (201605-30-31-32). J.V.
- 527 laboratory is a member of Proteored, PRB3 and is supported by grant PT17/0019, of the
- 528 PE I+D+i 2013-2016, funded by ISCIII and European Regional Development Fund (ERDF).
- 529 M.R. received grants from the Ministerio de Economía y Competitividad (SAF2015-
- 530 64287R, SAF2017-90604-REDT). J.V and M.R received funding from the People Programme
- 531 (Marie Curie Actions) of the European Union Seventh Framework Programme (FP7/2007-
- 532 2013) under REA grant agreement nº 608027 (CardioNext Initial Training Networks
- project). A.B. is a FP7-PEOPLE-2013-ITN-Cardionext fellow. The CNIC is supported by the
- 534 Ministerio de Ciencia, Innovación y Universidades (MCNU) and the Pro-CNIC Foundation,
- and is a Severo Ochoa Center of Excellence (SEV-2015-0505).

536 ACKNOWLEDGMENT

- A.B. and D.R. acknowledge Fernanda Rey-Stolle for intellectual input on GC-MS data
- treatment. Simon Bartlett (CNIC) provided English editing. Graphical elements in Figure 1
- and 5 as well as in the graphical abstract were adapted from the Servier Medical Art
- 540 (SMART) PowerPoint image bank. SMART by Servier (https://smart.servier.com/) is

- 541 licensed under a Creative Commons Attribution 3.0 Unported License
- 542 (https://creativecommons.org/licenses/by/3.0/).
- 543 ABBREVIATIONS
- 544 FCs, fold changes; FACS, fluorescence-activated cell sorting; MS, mass spectrometry; LC,
- 545 liquid chromatography; CE, capillary electrophoresis; GC, and gas chromatography; PLA2,
- 546 phospholipase A2; QCs, quality controls; PCA, principal component analysis; HMDB,
- 547 Human Metabolome Database; AA, arachidonic acid; COX, cyclooxygenase; PGs,
- 548 prostaglandins; LOX, lipoxygenase; LTs, leukotrienes; LA, linoleic acid; PUFAs,
- 549 polyunsaturated fatty acids; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid;
- 550 LysoPC, lysophospholipids; LPL, lysophospholipase; PLC and PLD, phospholipase C and D;
- 551 DG, diacyglycerols; PA, phosphatidic acids; 2-AG, 2-arachidonoylglycerol; AEA,
- anandamide (20:4, n=6); EPEA, anandamide (20:5, n=3); PC, phosphatidylcholine; PI,
- 553 phosphatidylinositol; PE, phosphatidylethanolamine; SM, sphingomyelins; Cer, ceramides;
- 554 CEHC, carboxy-ethyl-hydroxy-chroman; PTPRC, type C tyrosine protein phosphatase
- receptor; TRP, transient receptor potential protein family.

556 **COMPETING FINANCIAL INTERESTS**

557 The authors declare no competing financial interests.

559	REFERENCES							
560	1. Fan, Y.; Hanai, J. I.; Le, P. T.; Bi, R.; Maridas, D.; DeMambro, V.; Figueroa, C. A.; Kir, S.;							
561	Zhou, X.; Mannstadt, M.; Baron, R.; Bronson, R. T.; Horowitz, M. C.; Wu, J. Y.; Bilezikian, J. P.;							
562	Dempster, D. W.: Rosen, C. J.: Lanske, B., Parathyroid Hormone Directs Bone Marrow							
563	Mesenchymal Cell Fate, <i>Cell Metab</i> 2017 , 25, (3), 661-672.							
564	2 Wenes M : Shang M : Di Matteo, M : Goveia, L : Martin-Perez, R : Serneels, L : Prenen, H :							
565	Ghesquiere, B.; Carmeliet, P.; Mazzone, M., Macrophage Metabolism Controls Tumor Blood Vessel							
566	Morphogenesis and Metastasis. <i>Cell Metab</i> 2016, 24, (5), 701-715.							
567	3. Hirth, M.; Liverani, S.; Maniow, S.; Bouget, F. Y.; Ponnert, G.; Sasso, S., Metabolic profiling							
568	identifies trehalose as an abundant and diurnally fluctuating metabolite in the microalga							
569	Ostreococcus tauri. <i>Metabolomics</i> 2017, 13, (6), 68.							
570	4. Sukumar, M.; Liu, J.; Mehta, G. U.; Patel, S. J.; Roychoudhuri, R.; Crompton, J. G.;							
571	Klebanoff, C. A.; Ji, Y.; Li, P.; Yu, Z.; Whitehill, G. D.; Clever, D.; Eil, R. L.; Palmer, D. C.; Mitra, S.; Rao,							
572	M.; Keyvanfar, K.; Schrump, D. S.; Wang, E.; Marincola, F. M.; Gattinoni, L.; Leonard, W. J.;							
573	Muranski, P.; Finkel, T.; Restifo, N. P., Mitochondrial Membrane Potential Identifies Cells with							
574	Enhanced Stemness for Cellular Therapy. <i>Cell Metab</i> 2016, 23, (1), 63-76.							
575	5. Ying, Q. L.; Stavridis, M.; Griffiths, D.; Li, M.; Smith, A., Conversion of embryonic stem cells							
576	into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003, 21, (2), 183-6.							
577	6. Claudi, B.; Sprote, P.; Chirkova, A.; Personnic, N.; Zankl, J.; Schurmann, N.; Schmidt, A.;							
578	Bumann, D., Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial							
579	chemotherapy. <i>Cell</i> 2014, 158, (4), 722-33.							
580	7. Pechhold, S.; Stouffer, M.; Walker, G.; Martel, R.; Seligmann, B.; Hang, Y.; Stein, R.; Harlan,							
581	D. M.; Pechhold, K., Transcriptional analysis of intracytoplasmically stained, FACS-purified cells by							
582	high-throughput, quantitative nuclease protection. <i>Nat Biotechnol</i> 2009, 27, (11), 1038-42.							
583	8. Julius, M. H.; Masuda, T.; Herzenberg, L. A., Demonstration that antigen-binding cells are							
584	precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter.							
585	Proc Natl Acad Sci U S A 1972, 69, (7), 1934-8.							
586	9. Moussaieff, A.; Rogachev, I.; Brodsky, L.; Malitsky, S.; Toal, T. W.; Belcher, H.; Yativ, M.;							
587	Brady, S. M.; Benfey, P. N.; Aharoni, A., High-resolution metabolic mapping of cell types in plant							
588	roots. Proceedings of the National Academy of Sciences of the United States of America 2013 , 110,							
589	(13), E1232-41.							
590	10. Pencik, A.; Simonovik, B.; Petersson, S. V.; Henykova, E.; Simon, S.; Greenham, K.; Zhang,							
591	Y.; Kowalczyk, M.; Estelle, M.; Zazimalova, E.; Novak, O.; Sandberg, G.; Ljung, K., Regulation of							
592	auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic							
593	acid catabolite 2-oxindole-3-acetic acid. Plant Cell 2013, 25, (10), 3858-70.							
594	11. Petersson, S. V.; Johansson, A. I.; Kowalczyk, M.; Makoveychuk, A.; Wang, J. Y.; Moritz, T.;							
595	Grebe, M.; Benfey, P. N.; Sandberg, G.; Ljung, K., An auxin gradient and maximum in the							
596	Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and							
597	synthesis. <i>Plant Cell</i> 2009, 21, (6), 1659-68.							
598	12. Petersson, S. V.; Linden, P.; Moritz, T.; Ljung, K., Cell-type specific metabolic profiling of							
599	Arabidopsis thaliana protoplasts as a tool for plant systems biology. Metabolomics 2015, 11, (6),							
600	1679-1689.							
601	13. Roci, I.; Gallart-Ayala, H.; Schmidt, A.; Watrous, J.; Jain, M.; Wheelock, C. E.; Nilsson, R.,							
602	Metabolite Profiling and Stable Isotope Tracing in Sorted Subpopulations of Mammalian Cells.							
603	Analytical chemistry 2016, 88, (5), 2707-13.							
604	14. Llufrio, E. M.; Wang, L.; Naser, F. J.; Patti, G. J., Sorting cells alters their redox state and							
605	cellular metabolome. <i>Redox Biol</i> 2018, 16, 381-387.							

606 15. Fiehn, O.; Robertson, D.; Griffin, J.; van der Werf, M.; Nikolau, B.; Morrison, N.; Sumner, L. 607 W.; Goodacre, R.; Hardy, N. W.; Taylor, C., The metabolomics standards initiative (MSI). 608 *Metabolomics* **2007**, 3, (3), 175-178. 609 Kung, C., A possible unifying principle for mechanosensation. *Nature* **2005**, 436, (7051), 16. 610 647-654. 611 Damann, N.; Voets, T.; Nilius, B., TRPs in Our Senses. Current Biology 2008, 18, (18), R880-17. 612 R889. 613 18. Myers, B. R.; Saimi, Y.; Julius, D.; Kung, C., Multiple Unbiased Prospective Screens Identify 614 TRP Channels and Their Conserved Gating Elements. The Journal of General Physiology 2008, 132, 615 (5), 481-486. 616 19. Yin, J.; Kuebler, W. M., Mechanotransduction by TRP Channels: General Concepts and 617 Specific Role in the Vasculature. Cell Biochemistry and Biophysics 2009, 56, (1), 1. 618 20. van Rossum, D. B.; Patterson, R. L., PKC and PLA2: Probing the complexities of the calcium 619 network. Cell Calcium 2009, 45, (6), 535-545. 620 21. Lehtonen, J. Y.; Kinnunen, P. K., Phospholipase A2 as a mechanosensor. Biophysical Journal 621 **1995,** 68, (5), 1888-1894. 622 Peterson, J. W.; Boldogh, I.; Popov, V. L.; Saini, S. S.; Chopra, A. K., Anti-inflammatory and 22. 623 antisecretory potential of histidine in Salmonella-challenged mouse small intestine. Lab Invest 624 **1998,** 78, (5), 523-34. 625 23. Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A. R., Gas chromatography mass 626 spectrometry-based metabolite profiling in plants. Nat Protoc 2006, 1, (1), 387-96. 627 24. Yuan, M.; Breitkopf, S. B.; Yang, X.; Asara, J. M., A positive/negative ion-switching, targeted 628 mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed 629 tissue. Nat Protoc 2012, 7, (5), 872-81. 630 25. Rojo, D.; Canuto, G. A.; Castilho-Martins, E. A.; Tavares, M. F.; Barbas, C.; Lopez-Gonzalvez, 631 A.; Rivas, L., A Multiplatform Metabolomic Approach to the Basis of Antimonial Action and 632 Resistance in Leishmania infantum. PLoS One 2015, 10, (7), e0130675. 633 Bargiela, R.; Mapelli, F.; Rojo, D.; Chouaia, B.; Tornes, J.; Borin, S.; Richter, M.; Del Pozo, M. 26. 634 V.; Cappello, S.; Gertler, C.; Genovese, M.; Denaro, R.; Martinez-Martinez, M.; Fodelianakis, S.; 635 Amer, R. A.; Bigazzi, D.; Han, X.; Chen, J.; Chernikova, T. N.; Golyshina, O. V.; Mahjoubi, M.; 636 Jaouanil, A.; Benzha, F.; Magagnini, M.; Hussein, E.; Al-Horani, F.; Cherif, A.; Blaghen, M.; Abdel-637 Fattah, Y. R.; Kalogerakis, N.; Barbas, C.; Malkawi, H. I.; Golyshin, P. N.; Yakimov, M. M.; 638 Daffonchio, D.; Ferrer, M., Bacterial population and biodegradation potential in chronically crude 639 oil-contaminated marine sediments are strongly linked to temperature. Sci Rep 2015, 5, 11651. 640 27. Whiley, L.; Godzien, J.; Ruperez, F. J.; Legido-Quigley, C.; Barbas, C., In-vial dual extraction 641 for direct LC-MS analysis of plasma for comprehensive and highly reproducible metabolic 642 fingerprinting. Anal Chem 2012, 84, (14), 5992-9. 643 28. Kind, T.; Wohlgemuth, G.; Lee, d. Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O., FiehnLib: 644 mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-645 flight gas chromatography/mass spectrometry. Anal Chem 2009, 81, (24), 10038-48. 646 29. Godzien, J.; Alonso-Herranz, V.; Barbas, C.; Armitage, E. G., Controlling the quality of 647 metabolomics data: new strategies to get the best out of the QC sample. Metabolomics 2014, 11, 648 (3), 518-528. 649 Armitage, E. G.; Godzien, J.; Alonso-Herranz, V.; López-Gonzálvez, Á.; Barbas, C., Missing 30. 650 value imputation strategies for metabolomics data. *Electrophoresis* 2015, 36, (24), 3050-60. 651 31. Godzien, J.; Ciborowski, M.; Armitage, E. G.; Jorge, I.; Camafeita, E.; Burillo, E.; Martín-

652 Ventura, J. L.; Rupérez, F. J.; Vázquez, J.; Barbas, C., A Single In-Vial Dual Extraction Strategy for the

653 Simultaneous Lipidomics and Proteomics Analysis of HDL and LDL Fractions. J Proteome Res 2016, 654 15, (6), 1762-1775. 655 32. Godzien, J.; Ciborowski, M.; Martinez-Alcazar, M. P.; Samczuk, P.; Kretowski, A.; Barbas, C., 656 Rapid and Reliable Identification of Phospholipids for Untargeted Metabolomics with LC-ESI-QTOF-657 MS/MS. Journal of proteome research 2015, 14, (8), 3204-16. 658 33. Godzien, J.; Armitage, E. G.; Angulo, S.; Martinez-Alcazar, M. P.; Alonso-Herranz, V.; Otero, 659 A.; Lopez-Gonzalvez, A.; Barbas, C., In-source fragmentation and correlation analysis as tools for 660 metabolite identification exemplified with CE-TOF untargeted metabolomics. *Electrophoresis* 661 **2015,** 36, (18), 2188-2195. 662 34. Salek, R. M.; Steinbeck, C.; Viant, M. R.; Goodacre, R.; Dunn, W. B., The role of reporting 663 standards for metabolite annotation and identification in metabolomic studies. Gigascience 2013, 664 2, (1), 13. Xia, J.; Sinelnikov, I. V.; Han, B.; Wishart, D. S., MetaboAnalyst 3.0--making metabolomics 665 35. 666 more meaningful. Nucleic Acids Res 2015, 43, (W1), W251-7. 667 36. Armitage, E. G.; Godzien, J.; Pena, I.; Lopez-Gonzalvez, A.; Angulo, S.; Gradillas, A.; Alonso-668 Herranz, V.; Martin, J.; Fiandor, J. M.; Barrett, M. P.; Gabarro, R.; Barbas, C., Metabolic Clustering 669 Analysis as a Strategy for Compound Selection in the Drug Discovery Pipeline for Leishmaniasis. 670 ACS Chem Biol 2018, 13, (5), 1361-1369. Patwardhan, A. M.; Scotland, P. E.; Akopian, A. N.; Hargreaves, K. M., Activation of TRPV1 671 37. 672 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. 673 Proceedings of the National Academy of Sciences of the United States of America 2009, 106, (44), 674 18820-18824. 675 38. Murakami, M., Lipid mediators in life science. Exp Anim 2011, 60, (1), 7-20. 676 39. Arduin, A.; Gaffney, P. R.; Ces, O., Regulation of PLCbeta2 by the electrostatic and 677 mechanical properties of lipid bilayers. Sci Rep 2015, 5, 12628. 678 Gao, G.; He, J.; Nong, L.; Xie, H.; Huang, Y.; Xu, N.; Zhou, D., Periodic mechanical stress 40. 679 induces the extracellular matrix expression and migration of rat nucleus pulposus cells by 680 upregulating the expression of intergrin alpha1 and phosphorylation of downstream 681 phospholipase Cgamma1. Mol Med Rep 2016, 14, (3), 2457-64. 682 41. Ren, K.; Ma, Y.; Huang, Y.; Liang, W.; Liu, F.; Wang, Q.; Cui, W.; Liu, Z.; Yin, G.; Fan, W., 683 Periodic mechanical stress activates MEK1/2-ERK1/2 mitogenic signals in rat chondrocytes through 684 Src and PLCgamma1. Braz J Med Biol Res 2011, 44, (12), 1231-42. 685 42. Bisogno, T.; Howell, F.; Williams, G.; Minassi, A.; Cascio, M. G.; Ligresti, A.; Matias, I.; 686 Schiano-Moriello, A.; Paul, P.; Williams, E.-J.; Gangadharan, U.; Hobbs, C.; Di Marzo, V.; Doherty, 687 P., Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of 688 endocannabinoid signaling in the brain. The Journal of Cell Biology 2003, 163, (3), 463-468. 689 43. Reisenberg, M.; Singh, P. K.; Williams, G.; Doherty, P., The diacylglycerol lipases: structure, 690 regulation and roles in and beyond endocannabinoid signalling. Philosophical Transactions of the 691 Royal Society B: Biological Sciences 2012, 367, (1607), 3264-3275. 692 Balgoma, D.; Astudillo, A. M.; Pérez-Chacón, G.; Montero, O.; Balboa, M. A.; Balsinde, J., 44. 693 Markers of Monocyte Activation Revealed by Lipidomic Profiling of Arachidonic Acid-Containing 694 Phospholipids. *The Journal of Immunology* **2010**, 184, (7), 3857-3865. 695 45. Shamsuddin, A. K. M.; Yang, G.-Y., Inositol & its Phosphates: Basic Science to Practical 696 Applications. Bentham Science Publishers Ltd: Sharjah, 2015; p 16-23. 697 46. Petrache, H. I.; Tristram-Nagle, S.; Gawrisch, K.; Harries, D.; Parsegian, V. A.; Nagle, J. F., 698 Structure and Fluctuations of Charged Phosphatidylserine Bilayers in the Absence of Salt.

699 Biophysical Journal 2004, 86, (3), 1574-1586.

700 47. Verhoven, B.; Schlegel, R. A.; Williamson, P., Mechanisms of phosphatidylserine exposure, 701 a phagocyte recognition signal, on apoptotic T lymphocytes. The Journal of Experimental Medicine 702 **1995,** 182, (5), 1597-1601. 703 Yu, R. K.; Tsai, Y.-T.; Ariga, T.; Yanagisawa, M., Structures, biosynthesis, and functions of 48. 704 gangliosides—An overview. Journal of oleo science 2011, 60, (10), 537-544. 705 49. Czarny, M.; Liu, J.; Oh, P.; Schnitzer, J. E., Transient mechanoactivation of neutral 706 sphingomyelinase in caveolae to generate ceramide. J Biol Chem 2003, 278, (7), 4424-30. 707 50. Czarny, M.; Schnitzer, J. E., Neutral sphingomyelinase inhibitor scyphostatin prevents and 708 ceramide mimics mechanotransduction in vascular endothelium. Am J Physiol Heart Circ Physiol 709 2004, 287, (3), H1344-52. 710 51. Tomiuk, S.; Hofmann, K.; Nix, M.; Zumbansen, M.; Stoffel, W., Cloned mammalian neutral 711 sphingomyelinase: Functions in sphingolipid signaling? Proceedings of the National Academy of 712 Sciences of the United States of America 1998, 95, (7), 3638-3643. Zhang, Y.; Yao, B.; Delikat, S.; Bayoumy, S.; Lin, X. H.; Basu, S.; McGinley, M.; Chan-Hui, P. 713 52. 714 Y.; Lichenstein, H.; Kolesnick, R., Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 715 1997, 89, (1), 63-72. 716 Park, M.-T.; Kang, J. A.; Choi, J.-A.; Kang, C.-M.; Kim, T.-H.; Bae, S.; Kang, S.; Kim, S.; Choi, 53. 717 W.-I.; Cho, C.-K.; Chung, H.-Y.; Lee, Y.-S.; Lee, S.-J., Phytosphingosine Induces Apoptotic Cell Death 718 via Caspase 8 Activation and Bax Translocation in Human Cancer Cells. Clinical Cancer Research 719 2003, 9, (2), 878-885. 720 54. Schreiber, V.; Dantzer, F.; Ame, J. C.; de Murcia, G., Poly(ADP-ribose): novel functions for 721 an old molecule. Nat Rev Mol Cell Biol 2006, 7, (7), 517-28. 722 55. Krajewski, W. A., Effect of Nonenzymatic Histone Acetylation on Chromatin High-Order 723 Folding. Biochem Biophys Res Commun 1996, 221, (2), 295-299. 724 Son, D. O.; Satsu, H.; Shimizu, M., Histidine inhibits oxidative stress- and TNF-α-induced 56. 725 interleukin-8 secretion in intestinal epithelial cells. FEBS Letters 2005, 579, (21), 4671-4677. 726 57. Lee, K. S.; Patton, J. L.; Fido, M.; Hines, L. K.; Kohlwein, S. D.; Paltauf, F.; Henry, S. A.; Levin, 727 D. E., The Saccharomyces cerevisiae PLB1 gene encodes a protein required for lysophospholipase 728 and phospholipase B activity. J Biol Chem 1994, 269, (31), 19725-30. 729 58. Watanabe, H.; Vriens, J.; Prenen, J.; Droogmans, G.; Voets, T.; Nilius, B., Anandamide and 730 arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 2003, 424, 731 (6947), 434-8. 732 Vriens, J.; Watanabe, H.; Janssens, A.; Droogmans, G.; Voets, T.; Nilius, B., Cell swelling, 59. 733 heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. 734 Proceedings of the National Academy of Sciences of the United States of America 2004, 101, (1), 735 396-401. 736 60. Nilius, B.; Vriens, J.; Prenen, J.; Droogmans, G.; Voets, T., TRPV4 calcium entry channel: a 737 paradigm for gating diversity. Am J Physiol Cell Physiol 2004, 286, (2), C195-205. 738 61. Nilius, B.; Watanabe, H.; Vriens, J., The TRPV4 channel: structure-function relationship and 739 promiscuous gating behaviour. Pflugers Arch 2003, 446, (3), 298-303. 740 62. Vriens, J.; Owsianik, G.; FissIthaler, B.; Suzuki, M.; Janssens, A.; Voets, T.; Morisseau, C.; 741 Hammock, B. D.; Fleming, I.; Busse, R.; Nilius, B., Modulation of the Ca2 permeable cation channel 742 TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. *Circ Res* **2005**, 97, (9), 908-15. 743 Sharif-Naeini, R.; Folgering, J. H.; Bichet, D.; Duprat, F.; Lauritzen, I.; Arhatte, M.; Jodar, M.; 63. 744 Dedman, A.; Chatelain, F. C.; Schulte, U.; Retailleau, K.; Loufrani, L.; Patel, A.; Sachs, F.; Delmas, P.; 745 Peters, D. J.; Honore, E., Polycystin-1 and -2 dosage regulates pressure sensing. Cell 2009, 139, (3), 746 587-96.

- Hardie, R. C., TRP channels and lipids: from Drosophila to mammalian physiology. *J Physiol* **2007**, 578, (Pt 1), 9-24.
 Hardie, R. C., Regulation of TRP channels via lipid second messengers. *Annu Rev Physiol*
- 2003, 65, 735-59.
 66. Hardie, R. C.; Muallem, S., Lipids in Ca2+ signalling--an introduction. *Cell Calcium* 2009, 45, (6), 517-20.
- 753 67. Hofmann, T.; Obukhov, A. G.; Schaefer, M.; Harteneck, C.; Gudermann, T.; Schultz, G.,
- Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. *Nature* 1999, 397, (6716),
 259-63.
- Burke, J. E.; Dennis, E. A., Phospholipase A2 structure/function, mechanism, and signaling. *J Lipid Res* 2009, 50 Suppl, S237-42.
- 758 69. Lambert, I. H.; Pedersen, S. F.; Poulsen, K. A., Activation of PLA2 isoforms by cell swelling 759 and ischaemia/hypoxia. *Acta Physiol (Oxf)* **2006**, 187, (1-2), 75-85.
- 760 70. Slotte, J. P.; Härmälä, A.-S.; Jansson, C.; Pörn, M. I., Rapid turn-over of plasma membrane
 761 sphingomyelin and cholesterol in baby hamster kidney cells after exposure to sphingomyelinase.
 762 *Biochimica et Biophysica Acta (BBA) Biomembranes* 1990, 1030, (2), 251-257.
- 763 71. Hannun, Y. A.; Obeid, L. M., The Ceramide-centric Universe of Lipid-mediated Cell
- 764 Regulation: Stress Encounters of the Lipid Kind. Journal of Biological Chemistry 2002, 277, (29),
- 765 25847-25850.

- 767
- 768
- 769

770 **FIGURE LEGENDS**

Figure 1. Simplified workflow for the metabolomic study of FACS-sorted peritoneal 771 macrophages. C57BL/6 mice received thioglycollate injections in the peritoneal cavity, and 772 773 macrophages were collected after 72 h. Cells were counted under a microscope and 774 divided in to 4 equal samples. The cell pellet of the Ctrl experimental group was snap-775 frozen immediately after isolation. Cells in the Ab samples were resuspended in blocking 776 buffer and incubated with anti-CD16/CD32 and PerCP-Cy5.5-labeled anti-CD45, followed by washing and snap-freezing in liquid N2. The Sort and Ab+Sort samples were prepared 777 according to the protocols for the Ctrl and Ab groups, respectively, but before the final 778 779 snap-freezing step the cells these 2 experimental groups were subjected to flow 780 cytometry. Metabolites were extracted from all cell pellets with i) MTBE:MetOH and ii) 781 MetOH:H2O, and the resulting supernatants were analysed by GC-EI-QMS, CE-ESI-TOF-MS, 782 and LC-ESI-QTOF-MS in positive and negative ionization modes in 2 chromatographic gradients (general and lipid). Five biological replicates were injected. Quality control (QC) 783 samples were prepared by pooling equal volumes of all metabolite extracts and injected in 784 785 between blocks of 4 samples until the end of the run to ensure analytical reproducibility. 786 Image courtesy of Servier Medical Art (SMART) PowerPoint image bank (https://smart.servier.com/). 787

788

Figure 2. Selected boxplots representing the intensity of annotated metabolites (inosine monophosphate, phenylalanine, linoleyl carnitine, hypoxanthine, alpha-CEHC, histidine, creatine, and LysoPE(20:0)) codetected by different separation techniques. These

metabolites were selected to illustrate distinct analytical situations and biochemical classes. The selection covers downregulated metabolites involved in pathways of energy generation, storage, and transfer (creatine, linoleyl carnitine), structural compounds (lysophospholipids), nucleic acid metabolism (hypoxanthine, IMP), and others (alpha-CEHC, histidine). Results are shown as box and whisker plots of minimum to maximum values obtained in 5 replicates. * Indicates p value < 0.05 versus baseline by Mann-Whitney U test followed by Benjamini-Hochberg post hoc correction.

799

800 Figure 3. Biochemical classes altered in 3 experimental conditions with respect to the control group (Ctrl): Ab, Sort, and Ab+Sort. (a) Hierarchical clustering analysis of 801 802 metabolites showing statistically significant alteration. (b) Direction of changes in the 803 subpopulations of amino acids, peptides, and analogues. (c) Biochemical categories (subclass in HMDB) of metabolites showing statistically significant alteration (Mann-Whitney U 804 805 test followed by Benjamini-Hochberg post hoc correction, p value < 0.05, n=5) with 806 manually curated identification. For details see Supplementary Figure S5 and 807 Supplementary Table S3.

808

809 **Figure 4**.

The heatmap represents the \log_2 fold changes of individual samples intensities in each condition with respect to Ctrl sample average intensity. Selected groups of metabolites with manually curated identification show statistically significant alterations (Benjamini-

813	Hochberg post hoc correction, p value < 0.05 in bold italics). For further details such as
814	individual intensities or separation techniques see Supplementary Table S3.
815	
816	Figure 5. FACS affects cell metabolism. The figure represents some of the main stress
817	inputs, including a graphical summary of the mechanosensitive cascade triggered by
818	mechanical stimulus of the plasma membrane (inset). Image courtesy of Servier Medical
819	Art (SMART) PowerPoint image bank (<u>https://smart.servier.com/</u>).
820	
821	
822	
823	

Figure 1.

Figure 2.

Figure 3.

Mass	Compound	log ₂ fold	d cha	inge (condition	vs. Ctrl)	<i>p</i> -v Benjamin	alue i-Hochberg
Decreas	ed or depleted AA-derivatives	Ab vs. Ctrl		Sort vs. Ctrl	Ab+Sort vs. Ctrl	Sort vs. Ctrl	Ab+Sort vs. Ctrl
602.5266 332.2713 364.2967 447.3342	1-Hexadecy-2-arachidonoyg ycerol Arachidonic acidethyl ester / Adrenic Acid / C22:4 Arachidony g ycerol ether O-arachidonoy camitine / N-stearoy tyrosine	-3.6 0.5 0.1 -0.1 0.9 0.7 -1.2 -0.6 -1.0 -0.1 0.3 0.3 -0.2 -0.7 -1.0 -0.3 -0.9 -2.8 -3.1 -2.7	0.3 0.5 -0.1 -0.4	-2.1 -1.3 -1.7 -1.1 d d d d d -1.7 -1.6 -1.1 -1.0 -3.3 -3.8 -3.8 -3.5	d -1.3 d d d d -1.9 -0.3 -1.5 -0.3 -0.3 -0.3 -0.8 -1.1 -0.5 -0.9 -1.1 d d d d d d	0.391 0.114 0.115 0.374	0.050 0.038 0.050 0.030
Increase	d PG and LT precursors, and other oxygenation pathways products						
334.215 423.3136 405.2864 312.1739 322.2503 571.474 338.2453 328.2397 278.2241 336.2297 396.2876	20-carboxy Arachidonic Acid / LTB5 / PGI2 / 8,18-di-HEPE / bicyclo-PGE2 / 5-HpEPE N-(2-phenoxy-ethyl) arachidonoyl amine 12-HETE-GABA / 15-HETE-GABA 5-HETE-8 5-HETE-8 5-HETE / 8-HETrE / 12-HETrE / 15HETrE Arachidonic Acid Leelamide DHET / DiHETCE / PGE1 deoxy / LTB4 keto-tetrahydro / LTB3 / PGF2 deoxy Docosahexaenoic acid Linolenic Acid PGA1 / PGB1 / epi-PGA1 / iso-PGA1 / PGF2 lactone / HpETE / DiHETE / LTB4 / HxA3 / HxB3 PGF2 13,14-dihydro-15-keto isopropylester 2.5 d d d d d d 2.5 d d d d d 2.5 d d d d d d d d d d d d 1.5 2.7 2.1 2.0 3.5 . . 1.1 1.1 0.8 0.8 0.9 1.1 1.5 .6 . 0.4 0.2 0.5 0.0 1.1 1.6 0.6 .	- 3.3 d - 2.9 a 0.9 1.2 1.5 2.4 2.4 1.7 2.2 2.0 .0.6 . . 2.0 .0.6 . . 2.0 .0.6 . . 1.0 0.8 1.2 . 1.0 0.8 1.8 1.8 0.6 1.1 1.0 .	a b b b b b c <thc< th=""> c c c</thc<>	1.000 1.000 0.093 0.032 0.237 1.000 0.041 1.000 0.041 0.041 0.032	0.030 0.031 0.038 0.031 0.031 0.031 0.034 0.034 0.145 0.057 0.186
Changes	in Lyso phospholipid species						
438.2749 543.3309 555.3816 553.3145 467.3012 493.3164 571.3623 551.3947 505.3507 523.3642 425.2526 425.2526 425.2526 509.3447 509.3475 509.3475 509.3475 509.3476 537.3808 493.3518 534.29558 620.2947 523.364	LysoP4(18:0) LysoPC(20:4) LysoPC(20:18:0) LysoPC(14:0) LysoPC(14:0) LysoPC(14:0) LysoPC(14:0) LysoPC(14:0) LysoPC(14:0) LysoPC(14:0) LysoPC(14:0) LysoPC(14:0) LysoPE(14:0) LysoPE(14:0) LysoPE(20:0) LysoPE(20:0) LysoPE(20:0) LysoPE(20:0) LysoPC(20:0)	D B D D - - - - - - - - - - - - - - - - - - - - 0.7 -0.1 -0.2 -0.1 -0.1 d d -0 -0 -0.1 0.7 -0.1 -0.2 -0.1 -0.1 0.0 -0.7 -0.4 -0.7 -0.6 0.1 -0.2 -0.7 -0.4 -1.0 -0.6 0.1 -0.2 -0.4 -0.5 -1.1 -0.6 0.1 -0.2 -0.4 -0.1 -0.6 -0.3 -0.5 1.1 -0.3 -0.6 -1.0 -0.7 -0.1 -0.2 -0.4 -0.7 0.1 -0.2 -0.4 -0.7 -1.0 -0.7 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2	8 - - - - - - - - - - - - -	I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	· ·	0.034 1.000 0.034 0.037 0.169 0.028 0.077 0.047 0.077 0.034 0.430 0.105 0.093 0.077 0.189 0.041 0.041 0.090	$\begin{array}{c} 1.000\\ 0.030\\ 1.000\\ 0.031\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.050\\ 0.192\\ 0.034\\ 0.034\\ 0.031\\ 0.034\\ 0.034\\ 0.031\\ \end{array}$
Specific	alterations in SM and Cer						
665.5933 649.637 784.6447 782.6274 860.6959 840.706	Cer(d40:2) Cer(d42:1) / N-Lignoceraylsphingosine SM(d40:2) SM(d40:3) SM(d44:2)	B B	- -0.2 -0.4 -0.4 -1.0	- 2 -1.3 -1.1 -1.2 -1.1 d d d d -1.1 -0.4 -0.8 -0.5 -0.8 -0.8 -1.0 -1.3 fold change	a a a a a a a a a a a a -0.4 -1.0 -0.2 -1.0 -2.4 d d d d d d 0.8 -0.6 0.2 -1.1 -1.9 -1.8 -0.9 -0.9 -2.2 -2.3	0.034 1.000 0.047 0.032 0.034 0.028	0.038 0.031 0.080 0.031 0.812 0.030
	d appears in the condition, absent in the con d depleted in the condition when compared	trol to control	52	J			
	 not present in control nor in the compared 	condition	-3	0 3	3		

Figure 4.

Figure 5.

For TOC only

Figure 1. Simplified workflow for the metabolomic study of FACS-sorted peritoneal macrophages. C57BL/6 mice received thioglycollate injections in the peritoneal cavity, and macrophages were collected after 72 h. Cells were counted under a microscope and divided in to 4 equal samples. The cell pellet of the Ctrl experimental group was snap-frozen immediately after isolation. Cells in the Ab samples were resuspended in blocking buffer and incubated with anti-CD16/CD32 and PerCP-Cy5.5-labeled anti-CD45, followed by washing and snap-freezing in liquid N2. The Sort and Ab+Sort samples were prepared according to the protocols for the Ctrl and Ab groups, respectively, but before the final snap-freezing step the cells these 2 experimental groups were subjected to flow cytometry. Metabolites were extracted from all cell pellets with i) MTBE:MetOH and ii) MetOH:H2O, and the resulting supernatants were analysed by GC-EI-QMS, CE-ESI-TOF-MS, and LC-ESI-QTOF-MS in positive and negative ionization modes in 2 chromatographic gradients (general and lipid). Five biological replicates were injected. Quality control (QC) samples were prepared by pooling equal volumes of all metabolite extracts and injected in between blocks of 4 samples until the end of the run to ensure analytical reproducibility.

190x212mm (300 x 300 DPI)

Figure 2. Selected boxplots representing the intensity of annotated metabolites (inosine monophosphate, phenylalanine, linoleyl carnitine, hypoxanthine, alpha-CEHC, histidine, creatine, and LysoPE(20:0)) codetected by different separation techniques. These metabolites were selected to illustrate distinct analytical situations and biochemical classes. The selection covers downregulated metabolites involved in pathways of energy generation, storage, and transfer (creatine, linoleyl carnitine), structural compounds (lysophospholipids), nucleic acid metabolism (hypoxanthine, IMP), and others (alpha-CEHC, histidine). Results are shown as box and whisker plots of minimum to maximum values obtained in 5 replicates. * Indicates p value < 0.05 versus baseline by Mann-Whitney U test followed by Benjamini-Hochberg post hoc correction.

190x254mm (300 x 300 DPI)

Figure 3. Biochemical classes altered in 3 experimental conditions with respect to the control group (Ctrl):
Ab, Sort, and Ab+Sort. (a) Hierarchical clustering analysis of metabolites showing statistically significant alteration. (b) Direction of changes in the subpopulations of amino acids, peptides, and analogues. (c)
Biochemical categories (sub-class in HMDB) of metabolites showing statistically significant alteration (Mann-Whitney U test followed by Benjamini-Hochberg post hoc correction, p value < 0.05, n=5) with manually curated identification. For details see Supplementary Figure S5 and Supplementary Table S3.

190x205mm (300 x 300 DPI)

Mass	Compound	log ₂ fold change (condition vs. Ctrl)				<i>p</i> -value Benjamini-Hochberg	
Decreas	ed or depleted AA-derivatives	Ab vs. Ctrl		Sort vs. Ctrl	Ab+Sort vs. Ctrl	Sort vs. Ctrl	Ab+Sort vs. Ctrl
602.5266 332.2713 364.2967 447.3342	1-Hexadecy-2-arachidonoyglycerol Arachidonic acid ethyl ester / Adrenic Acid / C22:4 Arachidonyl glycerol ether O-arachidonoylarithine / N-stearoyl tyrosine	-3.6 0.5 0.1 -0.1 0.9 0.7 -1.2 -0.6 -1.0 -0. 0.3 0.3 -0.2 -0.7 -1.1 -0.3 -0.9 -2.8 -3.1 -2.	9 0.1 1 0.1 0 -0. 7 -0.	-2.1 -1.3 -1.7 -1.1 0 d d d d 1 -1.7 -1.6 -1.1 -1.0 4 -3.3 -3.8 -3.8 -3.5	d -1.3 d d d -1.9 -0.3 -1.5 -0.3 -0.3 -0.8 -1.1 -0.5 -0.9 -1.1 d d d d d d	0.391 0.114 0.115 0.374	0.050 0.038 0.050 0.030
Increase	ed PG and LT precursors, and other oxygenation pathways products						
334.215 423.3136 405.2864 312.1739 322.2503 571.474 338.2453 328.2397 278.2241 336.2297 396.2876	20-carboxy Arachidonic Acid / LTBS / PGI2 / 8,18-di-HEPE / bicyclo-PGE2 / 5-HpEPE N-(2-phenoxy-ethy) arachidonoyl amine 12-HETC-68D / 15-HETE GABA 5-HETE / 8-HETE / 12-HETE / 15HETE Arachidonic Acid Leelamide DHET / DHETE / PGE1 deoxy / LTB4 keto-tetrahydro / LTB3 / PGF2 deoxy Docoshexaenoic acid Linolenic Acid PGA1 / PGB1 / opi-PGA1 / iso-PGA1 / PGF2 lactone / HpETE / DHETE / LTB4 / HxA3 / HxB3 PGF2 13,14-dihydro 15-keto isocropy elster	22 0 0 0 d 0 0 0 0 d 0 0 0 0 0 d 0 0 0 0 0 0 15 22 21 20 0 0 0 1.1 0.8 0.8 0.9 1 15 17 0 0 1.5 12 2.1 16 0		I I I I I 2 24 2.1 1.7 2.8 3 3 3 3 2 20 1.0 3.3 2.1 2 2.0 1.0 3.3 2.1 1 2.6 2.0 3.2 3.0 1 0.0 8.1.2 1.0 1 1.0 8.8 1.8 1.8 0 0.8 1.2 1.1 0.6	a a a a a a a a a 20 27 3.4 3.0 a a a a a a a a b a a a a a b a a a a b a a a a a a a a a a a b a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a <	1.000 1.000 0.093 0.032 0.237 1.000 0.041 1.000 0.041 0.041 0.032	0.030 0.031 0.038 0.031 0.031 0.031 0.034 0.034 0.034 0.034 0.057 0.186
Changes	in Lyso phospholipid species						
438,2749 543,3309 555,384 467,3012 493,3164 571,3623 551,3947 505,3307 523,3642 425,2526 481,315 509,3445 509,3475 500,3475 500,44755 500,44755 500,44755 500,44755 500,447550	LysoPA(18:0) LysoPC(20:4) LysoPC(10:80) LysoPC(14:0) LysoPC(14:0) LysoPC(12:0) LysoPC(12:1) LysoPC(20:0) LysoPC(18:0) LysoPC(10:1) LysoPC(10:1) LysoPC(10:1) LysoPC(10:0) L	. .	3 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·	0.034 1.000 0.034 0.032 0.077 0.028 0.077 0.043 0.430 0.430 0.05 0.077 0.89 0.077 0.89 0.077 0.89 0.041 0.041 0.090	1.000 0.330 1.000 0.031 0.030 0.030 0.030 0.030 0.030 0.030 0.050 0.034 0.034 0.034 0.034 0.034 0.050 0.034 0.057 0.034 0.057
Specific	alterations in sphingolipid species (SM and Cer)						
665.5933 649.637 784.6447 782.6274 860.6959 840.706	Cer(d40:2) Cer(d42:1) / N-Ugnoceroylsphingosine SM(d40:3) SM(d42:1) SM(d44:2) appears in the condition, absent in the con	J J J J J - - - - - - 0.2 0.0 0.0 - 0.3 - 0.9 d d d d d 0.5 0.7 0.3 -0.5 - - 0.0 -0.6 -0.1 -0.4 - - 0.0 -0.6 -0.1 -0.4 - -	3 -0. 3 -0. 1 -0. 1 -0. 3 -1. log	a a a a - - - - - 2 -1.3 -1.1 -1.2 -1.1 d d d a a 4 -1.1 -0.4 -0.8 -0.6 0 -0.8 -0.8 -1.0 -1.3 z fold change	J J J J J 10 2 3 3 3 -0.4 -1.0 0.2 1.0 2.4 d d d d d d 0.8 -0.6 0.2 -1.1 1.9 -1.8 -0.9 -0.9 -2.2 -2.3	0.034 1.000 0.047 0.032 0.034 0.028	0.038 0.031 0.080 0.031 0.812 0.030
	 d depleted in the condition when compared not present in control nor in the compared 	to control condition	-3	0	3		

Figure 4. The heatmap represents the log2 fold changes of individual samples intensities in each condition with respect to Ctrl sample average intensity. Selected groups of metabolites with manually curated identification show statistically significant alterations (Benjamini-Hochberg post hoc correction, p value < 0.05 in bold italics). For further details such as individual intensities or separation techniques see Supplementary Table S3

190x176mm (300 x 300 DPI)

Figure 5. FACS affects cell metabolism. The figure represents some of the main stress inputs, including a graphical summary of the mechanosensitive cascade triggered by mechanical stimulus of the plasma membrane (inset).

190x155mm (300 x 300 DPI)

84x47mm (300 x 300 DPI)