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Abstract Background and Aim: Caloric restriction (CR) improves insulin sensitivity and is one of
the dietetic strategies most commonly used to enlarge life and to prevent aging-induced cardio-
vascular alterations. The aim of this study was to analyze the possible beneficial effects of caloric
restriction (CR) preventing the aging-induced insulin resistance in the heart of male Wistar rats.
Methods and results: Three experimental groups were used: 3 months old rats (3m), 24 months
old rats (24m) and 24 months old rats subjected to 20% CR during their three last months of life
(24m-CR). After sacrifice hearts were mounted in a perfusion system (Langendorff) and heart
function in basal conditions and in response to accumulative doses of insulin (10�9-10�7 M),
in the presence or absence of Wortmannin (10�6 M), was recorded. CR did not attenuate the
aging-induced decrease in coronary artery vasodilation in response to insulin administration,
but it prevented the aging-induced downregulation of cardiac contractility (dp/dt) through acti-
vation of the PI3K/Akt intracellular pathway. Insulin stimulated in a greater extent the PI3K/Akt
pathway vs the activation of the MAPK pathway and increased the protein expression of IR,
GLUT-4 and eNOS in the hearts of 3m and 24m-CR rats, but not in the hearts of 24m rats. Further-
more, CR prevented the aging induced increase in endothelin-1 protein expression in myocardial
tissue.
Conclusion: In conclusion CR partially improves cardiac insulin sensitivity and prevents the aging
induced decrease in myocardial contractility in response to insulin administration through acti-
vation of PI3K/Akt pathway.
ª 2018 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the
Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Feder-
ico II University. Published by Elsevier B.V. All rights reserved.
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Introduction

Aging is considered the major risk factor for the develop-
ment of cardiovascular diseases, which represent the
leading cause of death in developed countries [1]. Among
the different factors, alterations in cardiovascular insulin
sensitivity could be one of the mechanisms implied in this
condition, as insulin resistance is a main factor in the
pathogenesis of cardiovascular diseases [2] and reduced
insulin sensitivity is a common finding in the elderly [3].

Insulin has several biological functions in addition to its
role in the regulation of plasma glucose levels. In the car-
diovascular system insulin is reported to induce arterial
vasodilatation through the release of nitric oxide (NO) by the
vascular endothelium [4]. In themyocardium insulin exerts a
positive inotropic effect which seems to be independent, at
least in part, from the stimulation of glucose uptake by car-
diomyocytes [5]. The insulin-induced increase of heart
contractility is reported tobemediatedbyPI3Kactivation [5],
enhanced Ca2þinflux through L-type Ca2þ channels [6] and
facilitation of sarcoplasmic reticular calcium transport [7].

It is well known that insulin binding to insulin receptor
(IR) activates two intracellular pathways; the phosphoi-
nositide 3-kinase (PI3K)/Akt pathway, which in skeletal
muscle and adipose tissue activates the translocation of
glucose transporter 4 (GLUT-4) from the cytoplasm to the
cellular membrane and mediates the metabolic effects,
and the mitogen activated protein kinase (MAPK) pathway,
which promotes cell proliferation and differentiation [8].
In the endothelium the activation of the PI3K/Akt pathway
derives in eNOS phosphorylation and NO production
whereas the activation of MAPK pathway induces the
release of the vasoconstrictor peptide endothelin-1 [9].

It is reported that PI3K/Akt and MAPK pathways are
differently affected by insulin resistance, with the activation
of PI3K/Akt being significantly reduced and the activation of
the MAPK pathway remaining unaltered in this condition
[4,10]. This imbalance results in a predominance of the
vasoconstrictor and proliferative actions of insulin, which
contributes to the impairment of cardiovascular function [9].
Most of the studies that have analyzed insulin effects on the
cardiovascular system have focused on the arterial vaso-
dilating actions, existing relatively few studies that had
analyzedthe insulin-induced inotropiceffect in theheart [11].

Caloric restriction is an effective intervention for pre-
venting both insulin resistance and aging-induced car-
diovascular alterations [12e14], including aging-induced
insulin vascular resistance [15]. The aim of this study was
to analyze the possible protective effects of CR in aging-
induced insulin resistance in the heart of male Wistar
rats, which may be relevant for the treatment/prevention
of aging-induced cardiac alterations in the elderly.

Methods

Animals

3month-old (3m; nZ 12) and 24month-old (nZ 24) male
Wistar rats were used in this study. Animal handling was
performed according to European Union laws (Directive
2010/63/EU) and experimental procedures were approved
by the Institutional and Regional Ethic Research
Committees.

Rats were housed in temperature and humidity-
controlled quarters and were subjected to a 12 h light/
dark cycle, and free access to both food (standard chow;
Eurorodent Diet 14%, Labdiet, St. Louis, MO, USA) and
water. Before sacrifice, animals were subjected to 12 h
fasting. Afterwards they were injected with heparin (1000
UI; i.p) and killed by an overdose of anesthesia (sodium
pentobarbital; 100 mg/kg i.p) followed by decapitation.

Caloric restriction

At the age of 21 months half of the 24m rats (n Z 12) were
subjected to a moderate caloric restriction protocol for
three months. For that purpose, animals were placed in
individual cages and were daily fed an amount of chow
equivalent to 80% of normal food intake. Previous data
show that at the end of this protocol restricted animals
show a reduction of approximately 20e25% in body
weight, without compromising their nutritional status,
and a reduction in the adiposity index even below the
adiposity index of young animals [16,17]. Therefore, this
protocol of CR can be considered a bearable intervention
comparable to dietetic protocols prescribed for losing
weight in humans in a healthy way.

Perfused heart technique (Langendorff)

After sacrifice, hearts were removed from the rats and
immediately the ascending aorta was cannulated. Hearts
were then subjected to retrograde perfusion in a non-
recirculating Langendorff perfusion system with Krebs-
Henseleit buffer (115 mM NaCl, 4.6 mM KCl, 1.2 mM
KH2PO4, 1.2 mM MgSO4, 2.5 mM CaCl2, 25 mM NaHCO3
and 11 mM glucose) equilibrated with 95% oxygen and 5%
carbon dioxide to a pH of 7.3e7.4. Perfusion was initiated
at a constant flow rate of 11e15 ml/min to provide a basal
perfusion pressure of approximately 70 mmHg. Both the
heart and the perfusion solution were maintained at 37 �C
throughout the entire process.

After a 20 min equilibration period with constant flow
perfusion, effects on coronary perfusion pressure, left
intraventricular pressure and heart rate were recorded in
response to accumulative doses of insulin added to the
perfusion solution (10�9 -10�7 M) in the presence/absence
of Wortmanin (10�6 M) (preincubation for 30 min before
insulin administration). Each dose of insulin was admin-
istered every ten minutes and the highest dose (10�7 M)
was administered continuously for half an hour in order to
induce significant changes in protein expression. To
compare the effects of insulin administration in cardiac
function half of the hearts from each experimental group
were perfused with Krebs-Henseleit buffer during the
same time without adding insulin (control hearts).

Coronary perfusion pressure was measured through a
lateral connection in the perfusion cannula and left
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ventricular pressure was measured using a latex balloon
inflated to a diastolic pressure of 5e10 mmHg, both of
them connected to Statham transducers (Statham In-
struments, Los Ángeles, CA, EE.UU). Left ventricular
developed pressure was recorded and used to calculate
both the heart rate and the first derivative of the left
ventricular pressure curve (dP/dt) as an index of heart
contractility. All these parameters were recorded on a
computer using the PowerLab/8e data acquisition system
(ADInstruments, Colorado Springs, CO, EE.UU).

After the functional studies both control and insulin
treated hearts from the three experimental groups were
collected and kept frozen (�80 �C) to further analyze the
effects of insulin administration in the protein expression
of different markers related to insulin sensitivity in the
myocardium.
Western Blot

100 mg of myocardial tissue was homogenized using RIPA
buffer. After centrifugation (12000 rpm, 4�C, 20min), su-
pernatant was collected and total protein content was
measured by the Bradford method (SigmaeAldrich, St.
Louis, MO, EE.UU). In each assay, the same amount of
protein was loaded in each well (100 mg). After electro-
phoresis using resolving acrylamide SDS gels (8e10%) (Bio-
Rad, Hércules, CA, EE.UU), proteins were transferred to
polyvinylidine difluoride (PVDF) membranes (Bio-Rad,
Hércules, CA, EE.UU). Transfer efficiency was determined
by Ponceau red dyeing (SigmaeAldrich, St. Louis, MO,
EE.UU). Membranes were then blocked with Tris-buffered
saline (TBS) containing 5% (w/v) non-fat dried milk and
incubated with the appropriate primary antibody; Akt
(1:1000) (Merck Millipore, Darmstadt, Germany);
Phospho-Akt (Ser473) (1:500) (Cell signaling Technology,
Danvers, MA, EE.UU); MAPK (1:1000) (Merck Millipore,
Darmstadt, Germany); Phospho-Erk1/2(Thr185/Tyr187)
(1:500) (Merck Millipore, Darmstadt, Germany); IR
(1:500) (Abcam, Cambridge, UK); eNOS (1:200) (Abcam,
Cambridge, UK), GLUT-4 (1:500) (Abcam, Cambridge, UK),
Table 1 Body weight, relative heart weight, basal perfusion pressure, lef
(3m), 24 month-old rats fed “ad libitum” (24m) and 24 month-old rats subj
CR).

3m control 3m þ
wortmannin

24m control

Body weight (g) 401 � 9.4 e 679.2 � 25.3 **
Heart (mg/100 g bw) 332 � 0.009 e 258 � 0.013 ***
% Coronary perfusion,

pressure (mm Hg)
95 � 5 45 � 2 $$$ 76 � 7

Left ventricular
developed pressure
(mm Hg)

73 � 8 95 � 5 $ 92 � 18

dp/dt (mm Hg/s) 1794 � 159 2711 � 198 $$ 2177 � 408
Heart rate (beats/min) 234 � 10 215 � 1 186 � 7 *

*P < 0.05 vs 3 months; ***P < 0.001 vs 3 months ###P < 0.001 vs 24 mo
Data are represented as mean � SEM (n Z 7e9 rats/group).
ET-1 (1:250) (Abcam, Cambridge, UK)GAPDH (1:1000)
(SigmaeAldrich, St. Louis, MO, EE.UU).

Membranes were washed and incubated with the sec-
ondary antibody conjugated with peroxidase (1:2000;
Pierce, Rockford, IL, USA). Peroxidase activity was visual-
ized by chemiluminescence and quantified by densitom-
etry using BioRad Molecular Imager ChemiDoc XRS System
(Hércules, CA, EE.UU). All membranes were finally incu-
bated with GAPDH (SigmaeAldrich, St. Louis, MO, EE.UU)
to normalize each sample for gel-loading variability. For
each sample relative protein expression levels were
calculated in relation to protein expression levels in sam-
ples from 3m rats.
Statistical analysis

Data of cardiac function were analyzed by repeated mea-
sures ANOVA. Protein expression data was analyzed by
two-way ANOVA considering the experimental group (3m,
24m or 24m-CR) as one factor and insulin administration
as other factor. In case of interaction between the two
factors, one-way ANOVA was carried out. The post-hoc
analysis was performed by the Newman Keuls test. A p
value of <0.05 was considered significant.
Results

Body and heart weights

CR prevented the aging-induced increase in body weight
and attenuated the aging-induced decrease in heart rela-
tive weight (Table 1).
Hemodynamic parameters of perfused hearts in basal
conditions

In basal conditions, 24m rats showed lower heart rate
compared to 3m rats, without significant changes in cor-
onary pressure, developed intraventricular pressure or dP/
t ventricular developed pressure and heart rate in 3 month-old rats
ected to caloric restriction during their three last months of life (24m-

24 m þ
wortmannin

24m-CR control 24m-
CR þ wortmannin

* e 558.5 � 9.8 ***, ### e

e 288 � 0.011 # e

69 � 6 90 � 6 65 � 12

99 � 1 91 � 12 972 � 16

2436 � 426 2115 � 289 1743 � 343
178 � 23 195 � 11* 177 � 16

nths.
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dt. CR did not modify any of the hemodynamic parameters
(Table 1).
Hemodynamic parameters of perfused hearts in response
to insulin

Insulin administration to perfused hearts induced changes
in coronary perfusion pressure, developed intraventricular
pressure and dP/dt, that were significantly different be-
tween the doses of insulin and also between experimental
groups.

Figure 1 shows how insulin administration to the
perfusion system induced vasodilatation of coronary ar-
teries at the concentrations of 10�9 and 10�8 M and
vasoconstriction at the concentration of 10�7 M in 3m rats.
On the contrary, vasodilatation in response to insulin (10�9

and 10�8 M) was abolished and contraction in response to
insulin 10�7 M was significantly increased in coronary ar-
teries from 24m rats compared to 3m rats (Fig. 1). CR did
not prevent the aging induce alterations in coronary ar-
teries in response to insulin administration.

Figure 2 shows how insulin administration (10�9 and
10�8 M) increased intraventricular pressure (Fig. 2A) and
dP/dt (Fig. 2B) in the hearts of 3m rats but not in the hearts
of 24m rats. CR partially restored the aging induced
decrease both in intraventricular pressure and dP/dt. Heart
rate was not significantly modified in response to insulin
in any experimental group (data not shown).
Hemodynamic parameters of perfused hearts in response
to insulin after blockade of the IP3K by Wortmannin

In basal conditions, pretreatment with the PI3K antagoinst
Wortmannin (10�6 M) reduced basal coronary perfusion
Control
Wortmannin (10-6 M)

-10

0

10

20

30

40

In

10-9

Ch
an

ge
in

 
yranoroc

noisufrep
pr

es
su

re
(m

m
Hg

)

**$$ $$

24m-CR24m3m 3m

Figure 1 Coronary vasodilatation (negative changes in coronary perfusion
perfusion pressure) in response to insulin (10�9 -10�7 M) in perfused hearts f
old rats after 3 months of caloric restriction (24m-CR), in the absence/pres
between 3m and 24m. $$ P < 0.01 difference between hearts in the pres
mean � S.E.M; n Z 7e9 rats/experimental group.
pressure (P < 0.001) and increased basal dP/dt (P < 0.01)
and developed intraventricular pressure (P < 0.05) in
perfused hearts from 3m rats. On the contrary, pre-
incubation with Wortmannin did not modify any of the
hemodynamic parameters in the perfused hearts of 24m
and 24m-CR rats (Table 1).

Wortmannin preincubation blocked insulin induced
coronary vasodilatation in the hearts from 3m rats, but it
did not modify insulin-induced vasoconstriction in the
hearts from 24m rats (Fig. 1). Likewise, Wortmannin
abolished the insulin-induced increase of developed
intraventricular pressure (Fig. 2A) and dP/dt (Fig. 2B) both
in 3m rats and in 24m-CR rats.
Activation of IP3K/Akt y MAPK pathways by insulin in
perfused hearts

Both factors, experimental group and insulin, induced a
significant effect on the p-Akt/Akt ratio (P < 0.05 and
P < 0.001 respectively; Fig. 3A) with no interaction be-
tween them. The post-hoc analysis revealed no significant
differences among experimental groups in basal condi-
tions. Insulin administration significantly increased the p-
Akt/Akt ratio in the heart of 3m (P < 0.001), 24m (P < 0.01)
and 24m-CR (P < 0.001) rats, with this increase being
significantly lower in the heart of 24m rats.

There was an interaction between the two factors in the
p-MAPK/MAPK ratio (F Z 4.96; P < 0.05; Fig. 3B). In
absence of insulin this ratio was significantly decreased in
the hearts of 24m-CR rats compared to young rats
(P < 0.01). In response to insulin, the activation of MAPK
was reduced in the hearts of 3m rats (P < 0.02), not
modified in the hearts of 24m rats and significantly
increased in the hearts of 24m-CR (P < 0.01).
sulin (M)

10-8 10-7

**

24m-CR24m 24m-CR24m3m

pressure) and coronary vasoconstriction (positive changes in coronary
rom 3 (3m) e or 24-months-old rats fed at libitum (24m), or 24-months-
ence of the PI3K inhibitor Wortmannin (10�6 M). **P < 0.01 difference
ence or absence of Wortmannin (10�6 M). Values are represented as
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Finally, the rationale between the p-Akt/Akt and p-
MAPK/MAPK ratios is shown in Fig. 3C. Both factors,
experimental group and insulin, induced a significant ef-
fect on this ratio (P < 0.05 and P < 0.001 respectively;
Fig. 3C) with no interaction between them. In basal con-
ditions hearts of 24m-CR rats showed an increase in the
Akt/MAPK ratio compared to young rats (P < 0.01). After
insulin administration, a significant increase was found in
the hearts of 3m (P < 0.001) and 24m-CR (P < 0.01) rats
but not in the hearts of 24m rats.
Effects on insulin in GLUT-4, IR, ET-1 and eNOS levels in
perfused hearts

Figure 4 shows the protein levels of eNOS (4A), IR (4B),
GLUT-4 (C) and ET-1 (D) in hearts from 3m, 24m and 24m-
CR rats in absence/presence of insulin administration.

There was no interaction between factors in eNOS, IR
and GLUT-4 protein levels. In all cases, hearts perfused
with vehicle showed no significant changes among
experimental groups. In response to insulin eNOS, IR and
GLUT-4 protein content was significantly up-regulated in
hearts from 3m to 24m-CR rats (P < 0.05 for all) but not in
hearts from 24m rats.
Regarding ET-1 protein expression in myocardial tissue,
a significant interaction between the two factors was
found (FZ 6.27; P < 0.05). In basal conditions, hearts from
24m rats showed increased levels of ET-1 compared to 3m
rats (P < 0.05). Insulin administration did not change ET-1
protein content in the hearts of 3m and 24m-CR rats but it
significantly downregulated its protein levels in the hearts
of 24m rats (P < 0.05).
Discussion

This study shows that insulin has direct effects on the
heart, both in the myocardium and in the coronary circu-
lation and that these effects are altered in response to both
aging and CR. To our knowledge, this is the first study
reporting the beneficial effects of CR in aging-induced
cardiac insulin resistance and may have a strong relevance
in the treatment and/or prevention of aging induced car-
diovascular alterations.

Our results show that in the hearts of young rats, in-
sulin produces vasodilatation in the coronary circulation at
low concentrations and vasoconstriction at the highest
concentration studied (10�7 M). Likewise insulin has been
reported to exert vasodilatory effects in different vascular
beds such as the aorta [18], the mesenteric [19], the
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cerebral [20] and the coronary [21]circulations. Our results
also show that insulin increased myocardial contractility in
the hearts of the 3m rats, as indicated by the developed
intraventricular pressure and dP/dt, which is in agreement
with previous findings by Stehr et al., 2007 [22] and Ren
et al., 1999, [23].

Insulin-induced coronary vasodilatation in the heart
of young rats seems to be mediated by the activation of
the PIK3/Akt pathway, as this effect was abolished by the
preincubation with the PIK3 antagonist Wortmannin.
This pathway is reported to mediate insulin-induced
vasodilatation in coronary arteries [24] and the release
of nitric oxide by endothelial cells [25]. Likewise, our
results show that PI3K activation is also responsible for
the insulin-induced inotropic effects in the myocardium,
as previously described [26]. However, the vasocon-
striction of coronary arteries in response to a high dose of
insulin (10�7 M) was not affected by Wortmannin
blockade, which indicates that other mechanism
different than PI3K activation, may act in this condition.
This mechanism most likely involves the activation of the
MAPK pathway and the subsequent production of ET-1
[27] and could be related with the increased incidence
of cardiovascular diseases in situations of hyper-
insulinemia [4], as the activation of this pathway pro-
motes proliferative and vasoconstrictor effects [8]. In this
regard, our results show that myocardial ET-1 levels in
response to insulin 10�7 M increase in young rats but not
in aged rats, regardless of being subjected or not to CR,
whereas the vasoconstrictor effect is evident in all
experimental groups. These results would contradict our
previous hypothesis that insulin induced-
vasoconstriction of coronary arteries is mediated by ET-
1. However, it is important to point out that ET-1
expression has been measured in the myocardium and
not specifically in coronorary arteries, so to address this
issue further investigations that include the quantifica-
tion of ET-1 in coronary arteries are required.

Previous studies have confirmed that aging is associ-
ated with decreased insulin sensitivity in terms of glucose
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uptake by cardiomyocytes [28,29]. In this study we did not
measure glucose uptake, which may constitute a limitation
of the study. However, both the coronary vasodilatation
and the myocardial inotropic effect in response to insulin
were abolished in the hearts of 24m rats, which indicates a
state of cardiac insulin resistance. Likewise, other studies
have found that ageing is associated with decreased in-
sulin sensitivity in the myocardium [23]. This is probably
due to an impairment of the PIK3/Akt pathway, as the
ratios pAkt/Akt and Akt/MAPK were increased in response
to insulin in a less extent in the hearts of 24m rats
compared to the hearts of 3m rats. Although the protein
expression of IR and GLUT-4 was similar in the hearts of
young and old rats, insulin significantly activated the
protein expression of both proteins in the myocardium of
young rats but not in the myocardium of aged rats fed ad
libitum. The effect of insulin on GLUT-4 is mediated by
activation of PIK3/Akt [30], so these results clearly show
that aging is associated with an impairment of all the ef-
fects dependent of this pathway.

Aging-induced insulin resistance in coronary arteries is
most likely due to impairment in nitric oxide synthesis, as
eNOS protein expression was upregulated in response to
insulin in the hearts of young rats but not in the hearts of
aged rats fed ad libitum.

The vasoconstrictor peptide ET-1 exerts opposite effects
to nitric oxide, and its enhanced activity and/or production
by the endothelium is involved in cardiovascular insulin
resistance [9,31]. In the present study, the basal expression
of ET-1 was significantly increased in 24m rats, in agree-
ment with previous studies [32], but it was not modified in
response to insulin administration neither in young nor in
aged rats. Therefore the exact role of ET-1 in the reduced
insulin-induced vasodilatation in this experimental model
requires further investigation.

CR has emerged as an effective procedure to prevent
some of the vascular and cardiac dysfunctions associated
with aging [33]. The present model of CR has been shown
to attenuate insulin resistance in other organs and tissues
[13] including the aorta [15]. Likewise, in this study we
have found that CR improved partially or completely the
aging-induced insulin resistance in coronary arteries
vasodilation, myocardial contractility and the gene
expression of IR, GLUT-4 and eNOS in myocardial tissue. In
addition, although the basal expression of ET-1 was not
reduced by CR, in response to insulin the protein levels of
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this vasoconstrictor peptide were significantly reduced,
with this effect not being observed in aged rats fed at
libitum.

The beneficial effect of CR preventing the aging-induced
decrease in myocardial contractility seems to be mediated
by a decreased activation of MAPK pathway and an
increased activation of the PI3K/Akt pathway in response
to insulin as it is indicated by the Akt/MAPK ratio. It is
reported that insulin-induced activation of PI3K/Akt
pathway is responsible for the inotropic effect and for the
vasodilation of coronary arteries through eNOS activation
and the subsequent release of NO by vascular endothe-
lium, whereas activation of the MAPK pathway promotes
deleterious effects such as cardiomyocyte hypertrophia
and vasoconstriction of coronary arteries due to the
release of ET-1 [4]. It is also reported that in physiological
conditions the activation of the PI3K/Akt pathway pre-
dominates over the activation of the MAPK pathway. On
the contrary, in situations of insulin resistance the activa-
tion of the PI3K/Akt pathway decreases and the activation
of the MAPK pathway increases or remains unchanged in
response to insulin which justifies, at least in part, the
decreased contractility of myocardium in aged rats and its
prevention by CR.
Conclusions

In conclusion, CR may be an effective dietetic intervention
to improve the aging-induced impairment of cardiac
function due to decreased myocardial insulin sensitivity.
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