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ABSTRACT The connection between pharmacokinetic
models and system theory has been established for a long time.
In this approach, the drug concentration is seen as the output
of a system whose input is the drug administered at different
times. In this article we further explore this connection. We
show that system theory can be used to easily accommodate
any therapeutic regime, no matter its complexity, allowing the
identification of the pharmacokinetic parameters by means of
a non-linear regression analysis. We illustrate how to exploit
the properties of linear systems to identify non-linearities in
the pharmacokinetic data. We also explore the use of boot-
strapping as a way to compare populations of pharmacokinet-
ic parameters and how to handle the common situation of
using multiple hypothesis tests as a way to distinguish two
different populations. Finally, we demonstrate how the boot-
strap values can be used to estimate the distribution of derived
parameters, as can be the allometric scale factors.
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INTRODUCTION

The time evolution of a drug concentration in a two-
compartment model after a single bolus injection responds
to the system of differential equations

V c
dC tð Þ
dt

¼ −ClC tð Þ þ Q Cp tð Þ−C tð Þ� �

V p
dCp tð Þ
dt

¼ Q C tð Þ−Cp tð Þ� � ð1Þ

with initial values C 0ð Þ ¼ D
V c

and Cp(0) = 0. The time response

of the concentration in the central compartment is known to
be (1)
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Note that this response is only valid for a single, intravenous
bolus given at t= 0.

At the time of the conception of the paper Kinestat Pharma
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The relationship between pharmacokinetic models and sys-
tem theory was established (2–6) more than 40 years ago.
System theory states that the concentration in the different
compartments is the response of time-invariant systems whose
inputs are the drug doses and the output is the concentration:

dC tð Þ
dt

¼ F C tð Þð Þ þG t;D tð Þð Þ ð4Þ

where C(t) is a column vector containing the concentrations at
the locations of interest (the output of the system), D(t) is a
vector of doses (the input), andG and Fare functions that relate
the input and output. The advantage of the system theory
formulation is that it allows determining the concentrations
for any therapeutic regimen. Bolus are represented by Dirac
δ’s, δ(t); while constant infusions are represented by Heaviside
functions, u(t). A bolus at time t0 with a dose D0 is represented
by D0δ(t− t0), a constant infusion at rate R0 between t1 and t2 is
represented by R0(u(t− t1)− u(t− t2)). Any therapeutic regimen
can be expressed as the sum of these two types of terms. Forty
years ago, the concentration used to be calculated by solving
the differential equation system by analytical means such as the
Laplace transform. With the advent of modern computers, the
differential equation can be discretized into a difference equa-
tion and a numerical algorithm is used to calculate the time
response of the system (7, 8).

In this article we present some signal processing tools that
exploits the properties of systems in order to solve different
problems in pharmacokinetic modelling like the use of arbi-
trary models with arbitrary therapeutic regimens, detection of
non-linearities, comparison between population parameters,
... In order to better present the theory behind this data anal-
ysis, in some cases we immediately illustrate the ideas pre-
sented in the article with some experimental data. The data
corresponds to the Justesa Imagen SAU’s dimeric, nonionic,
low-osmolal and low viscosity X-ray contrast agent ICJ 3393
(see Fig. 1), and currently in phase II clinical trials as a contrast
agent for radiography.

MATERIALS AND METHODS

Animals

Beagle dogs (Biocentre, Barcelona, Spain) weighing 9.4–
10.7 kg and Sprague-Dawley rats (CRIFFA, Barcelona,
Spain) weighing 170–245 g were used. Animals were kept in
a controlled environment (17°C to 21°C, dark/light 12/12 h).
All animal procedures were conducted according to the
Directive 2010/63/EU of the European Parliament and of
the Council on the protection of animals used for scientific
purposes, 22 September 2010. Efforts were made to minimize
the number of animals used and their suffering.

Contrast Media

The X-ray contrast agent ICJ 3393 (N,N′-Bis[3-carbamoyl-
5-(2,3-dihydroxypropylcarbamoyl)-2,4,6-triiodophenyl]-N,N
′-bis(2,3-dihydroxypropyl)-malonamide; INN: Iosimenol;
CAS 181872–90-2) was labelled by interchange with carrier
free 125INa (Amersham, Buckinghamshire, England) in pres-
ence of Cu++ ions. The reaction mixture was filtered through
an anion exchange column to remove free iodine and a cation
exchange column to wash out the Cu++ ions. The chemical
and radiochemical purity of the 125I-labelled ICJ 3393
obtained were tested by HPLC and results were greater than
96%. [125I]-ICJ 3393 was formulated with sufficient carrier to
make solutions of ICJ 3393 at 30 to 320 mg I/ml.

Pharmacokinetic Studies

Studies in Rats

The pharmacokinetic profile of ICJ 3393 after intravenous
administration in rats was studied at three dose levels: 60 mg
I/kg (116.5 mg ICJ 3393/kg; 0.94 MBq/ml), 300 mg I/kg
(582.5 mg ICJ 3393/kg; 2.78 MBq/ml) and 1 g I/kg
(1.94 g/kg ICJ 3393; 0.75 MBq/kg). For each dose level stud-
ied, the following procedures were performed. The day prior
to drug administration, a catheter (Venocath-18; ABBOTT,
Ireland) was implanted into the left jugular vein of a group of
five rats (9) for blood sampling. After [125I]-ICJ 3393 admin-
istration into the right tail lateral vein, blood samples of 300 μl
were collected in plastic tubes. Following each blood sample,
the implanted catheter was flushed with 0.2 ml of heparinised
physiological saline (100 IU/ml). Plasma samples were
obtained by blood centrifugation at 2500×g for 10 min.
Radioactivity levels of plasma samples were measured by solid
scintillation counting using an Auto-Gamma 500 automatic
solid scintillation analyzer (PACKARD, Meriden, CT, USA),
and the corresponding counts per minute (cpm) values were
recorded. Plasma cpm values were transformed into equiva-
lent concentrations of ICJ 3393 using the specific activity of
the administered solution.

Studies in Dogs

Ten minutes prior to drug administration, a catheter
(Abbocath T 20G; ABBOTT, Ireland) was implanted into
the left saphenous vein of the dogs for blood sampling. After
[125I]-ICJ 3393 administration (0.6 g I/kg; 1.16 g ICJ 3393/
kg; 0.74MBq/kg) into the left antecubital vein, blood samples
of 3 ml were collected in heparinised plastic tubes. Plasma
samples (1 ml) were obtained after blood centrifugation at
2500×g for 10 min. Radioactivity levels in plasma samples
were determined as previously stated.
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Simulation of Pharmacokinetic Profiles for Arbitrary
Systems and Arbitrary Therapeutic Regimes

Numerical analysis provides procedural tools to simulate
equation systems like the one above (see Eq. (4)). The proce-
dure normally goes through the discretization of the differen-
tial equation system. This requires transforming the continu-
ous signals used in the differential equation into discrete sig-
nals evaluated at regular time intervals. For instance.

C n½ � ¼ C nT sð Þ ð5Þ

n is an index to refer to the sample number, Ts is the sampling
rate (note that this sampling is computational, and does not
require sampling the drug concentration from the patient or
animal). We refer to discrete signals with square brackets and
to continuous signals with parentheses. Given a generic differ-
ential equation system of the form

dC tð Þ
dt

¼ H t;C tð Þð Þ ð6Þ

then, the first-order, causal Euler method would iterate as

C n½ � ¼ C n−1½ � þ T sH n−1ð ÞT s;C n−1½ �ð Þ ð7Þ

In the family of systems we are interested in, H can be
written as

H t;C tð Þð Þ ¼ F C tð Þð Þ þG D tð Þð Þ ð8Þ

Consequently, the first-order, causal Euler iteration would
be

C n½ � ¼ C n−1½ � þ T sF C n−1½ �ð Þ þ T sG D n−1½ �ð Þ ð9Þ

The two-compartment model belongs to a class of systems
called linear systems with constant coefficients. These systems
are characterized by

F C tð Þð Þ ¼ AC tð Þ
G D tð Þð Þ ¼ BD tð Þ ð10Þ

where A and B are square matrices. For instance, we may
write the two-compartment model as

dC tð Þ
dt

dCp tð Þ
dt

0
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It can be easily seen that A ¼ −
Cl þ Q
V c

Q
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�
Q
V p

−
Q
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V c

0
�

0
1
V p

Þ.
The first-order, causal Euler iteration for linear systems

would be

C n½ � ¼ I þ AT sð ÞC n−1½ � þ T sBD n−1½ � ð12Þ

being I the identity matrix and having a rest initial condition,
C[n] = 0 if n< 0. The first term indicates how the concentra-
tion evolves over time in the absence of external doses, the
second term is an attempt to estimate the amount of drug
injected in the system between one sample and the next.
Actually, we can be more accurate and substitute the second
term by an exact account

C n½ � ¼ I þ AT sð ÞC n−1½ � þ T sB ∫
nT s

n−1ð ÞT s

D τð Þdτ ð13Þ

This discretization is known in numerical analysis as an
explicit scheme. Although very simple, it may result in unsta-
ble systems depending on Ts and A. Alternatively, we may use
an implicit scheme, which is always stable, and for linear sys-
tems they are not too complicated. The implicit Euler scheme
of first-order is of the form

C n½ � ¼ C n−1½ � þ T sH nT s;C n½ �ð Þ ð14Þ

For a linear system, this becomes

C n½ � ¼ C n−1½ � þ T sAC n½ � þ T sBD n½ � ð15Þ

Fig. 1 Molecular structure of ICJ
3393.
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Solving for C[n]

C n½ � ¼ I−AT sð Þ−1 C n−1½ � þ T sB ∫
nT s

n−1ð ÞT s

D τð Þdτ
 !

ð16Þ

where, as previously done, we have substituted the dose de-
pendent term by its more accurate expression.

These approximations are of first order because the
approximation error depends linearly with the sampling
rate, more accurate results are obtained with finer sam-
pling rates. We may increase the accuracy of the nu-
merical procedure by adopting more complex numerical
calculations. For instance a fourth order Runge-Kutta
procedure proceeds as follows

C n½ � ¼ C n−1½ � þ 1
6

h1 þ h2 þ h3 þ h4ð Þ ð17Þ

with

h1 ¼ T sH n−1ð ÞT s;C n−1½ �ð Þ
h2 ¼ T sH n−1ð ÞT s þ 1

2
T s;C n−1½ � þ 1

2
h1

� �

h3 ¼ T sH n−1ð ÞT s þ 1
2
T s;C n−1½ � þ 1

2
h2

� �

h4 ¼ T sH n−1ð ÞT s þ T s;C n−1½ � þ h3ð Þ

ð18Þ

For the particular case of linear systems, we may find a
simpler expression

C n½ � ¼ I þ AT s þ A2T 2
s

2!
þ A3T 3

s

3!
þ A4T 4

s

4!

� �
C n−1½ �

þ T sB ∫
nT s

n−1ð ÞT s

D τð Þdτ ð19Þ

Remarkably, the numerical methods developed in Eqs.
(12), (16), and (19) can be generally applied to any linear
system (even non-linear in Eq. (9)) and any dosing regi-
men. The two-compartment model is a linear system and,
consequently, the methodologies described above can be
applied. Actually, any multicompartment model with con-
stant coefficients is also a linear system. The simplicity of
reducing many different kinds of systems and therapeutic
regimens (like Eq. (19)) to a single difference equation
contrasts with the plethora of pharmacokinetic responses
for particular cases (exemplified in Eqs. (2) and (3) and
seen in books like (10)). Additionally, the numerical
scheme developed above lends itself to easy computational
implementation. In this way, a single formula covers a
wide range of different models simply by changing the
functions F and G. The validity of this approach has been
demonstrated in Sec. 3.1.

System Identification

The numerical procedure described so far has to be comple-
mented with a way to identify the pharmacokinetic system
once a therapeutic plan has been administered and the result-
ing drug concentrations have beenmeasured from the patient.
Suppose we have N concentration measurements, Ci (i =
1,2,...,N), taken at times ti. In the traditional approach we
would determine the model parameters, Θ (in the two-
compartments model, θ= {Vc, Vp,Q, Cl}), that minimize a da-
ta fidelity term like

min
θ

Ci−C tið Þð Þ2 ð20Þ

or

min
θ

log Cið Þ−log C tið Þð Þð Þ2 ð21Þ

In the discrete system theoretical approach, the system
identification is performed in the same way only that the pre-
dicted concentrations C(ti) are interpolated from the surround-
ing discrete samples.

From a theoretical point of view there is an important
distinction between the two objective functions (Eqs. (20)
and (21)). Both functions are assuming independence between
the noise observed at each of the samples [ (7), Sec. 3.3].
However, the first objective function presumes that additive
Gaussian noise while the second assumes multiplicative log-
normal noise (strictly speaking, one could perform least
squares, in natural or logarithmic units, without assuming
normality of the residuals; however, least squares optimization
corresponds to the maximum likelihood estimate if the resid-
uals are Gaussianly distributed, we have referred to this as-
sumption of normality in this sense). If noise were additive, it
would be the same at any concentration. However, this is not
the case, for instance (11) allows for bionanalysis with a max-
imum determination error of 15%. This implies that noise
must be smaller at lower concentrations and, consequently,
noise must be multiplicative.

Detection of Non-linearities

Figure 2 shows the typical profile of drug concentration in
plasma when the dose is fixed per weight (for instance, D0

mg/kg; in our case note that the dose is expressed in mg. of
iodine per kg.). Since each animal has a slightly different
weight, it is given a different dose. This introduces an extra
source of variation in the analysis of the data. However, for the
family of linear pharmacokinetic models, and only for this
family, we may computationally homogenize the different
concentration profiles. This is a result of a property of linear
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systems: the response of the linear system changes linearly with
the input. For instance, if the response to the input doseD(t) is
C(t), then the response to aD(t) is aC(t). In this way, we can
safely predict what would have been the response of each one
of the animals if its weight would have been different.
Formally, let us assume that there are N animals, each one
with a weightwi (i= 1,2,...,N) and drug concentration response
Ci(t). The actual dose of each animal is

Di tð Þ ¼ wiD0
δ tð Þ
0

� �

Let w ¼ 1
N ∑

N

i¼1
wi be the average weight of all the animals.

The corresponding dose for an animal of this weight, would
have been

D tð Þ ¼ wD0
δ tð Þ
0

� �

Note that

D tð Þ ¼ w
wi

Di tð Þ ð22Þ

If the response of the i-th animal to Di(t) is Ci(t), since the
pharmacokinetic model is linear, then the response of the
same system to D tð Þ would be

Ci tð Þ ¼ w
wi

Ci tð Þ ð23Þ

Finally, we may combine all these individual responses into
a single average response of the set of animals

C tð Þ ¼ 1
N

∑
N

i¼1
Ci tð Þ ¼ 1

N
∑
N

i¼1

w
wi

Ci tð Þ ð24Þ

We may also calculate the sample standard deviation

s tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1
∑
N

i¼1
Ci tð Þ−C tð Þ
� 	2

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1
∑
N

i¼1

w
wi

Ci tð Þ−C tð Þ
 !2

vuut
ð25Þ

Note that this average and standard deviation per sample is
different from the raw average and standard deviation be-
cause the different weights of the animals are taken into ac-
count. To illustrate the process, Fig. 3 shows the average and
standard deviation as proposed above.

This average profile may be used to fit the pharmacokinetic
parameters and then use this estimate as the initialization for
the fitting of the individual animals. More interestingly, we
may use the ability of linear systems to scale with the dose to
detect dose-dependent parameters. Figure 4 shows 3 groups of
animals. Each group was given a different dose D0, D1, and
D2. We may use the scale property of linear systems to calcu-
late which the concentration profile of each animal to a dif-
ferent dose would have been. To do so, let C0

i tð Þ be the re-
sponse of an animal to doseD0. If the dose wereD1, the animal
response would be

C0→1
i tð Þ ¼ D1

D0
C0

i tð Þ ð26Þ

As we did before we can average all responses to an
average weight and plot the average and standard devia-
tion (Fig. 5). This figure shows the concentration profiles
normalized by dose and weight. If the system was truly
linear, then the three curves would overlap. However, we
can see significant differences between the dose groups 1 or
2 h after injection. This reveals an important non-linearity
in the behavior of the system. The fact that the system is
not linear does not preclude a linear analysis. This is called
system linearization. The trick is to assume that the system
is linear in a neighborhood of the dose being analyzed
(technically this is related to a Taylor first order expansion
of the non-linear function connected the input and output
of the system). However, we must be conscious of the lim-
itations of the analysis and understand that the system may
behave “locally” as a two-compartment pharmacokinetic
model. As a consequence, the system parameters are valid
only for doses similar to the one being analyzed. Away
from this dose, a new system analysis must be performed.

Fig. 2 Drug concentration profiles in plasma from a set of 10 animals with a
fixed dose per weight.
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Comparing Two Pharmacokinetic Parameters Populations

In many occasions we need to ascertain whether two popula-
tions of pharmacokinetic parameters are significantly different
or not. For instance, wemaywant to determine if the population
of pharmacokinetic parameters estimated for dose D0 are signif-
icantly different from the pharmacokinetic parameters estimat-
ed for dose D1, or if the population of parameters estimated by
Method 1 is significantly different from the pharmacokinetic
parameters estimated by Method 2. In general, we need to
decide whether we have a single population of parameters, or
two populations of parameters. We may adopt different
approaches to the problem. In a parametric approach we would
assume that the population of parameters has some knownmul-
tivariate distribution, like the multivariate Gaussian, and use

parametric tests to determine if the multivariate mean and co-
variance matrices of both populations are significantly different
or not. Instead, we may see the number of populations as the
explanatory variable and use a criterion like Bayesian
Information Criterion or Akaike Information Criterion to de-
cide if we have 1 or 2 populations. The drawback of this ap-
proach is that there is no clear threshold to determine which of
the two criteria values represents reality. That is, these criteria
help to choose amongst a set of models, but they cannot state
whether the selected model is more or less likely.

Alternatively, we propose in this article to perform a hy-
pothesis test on the confusion matrix of a non-linear classifier.
The advantage of this approach is that the criterion is clearly
defined: the hypothesis that we have two populations is
rejected if the classifier cannot be proved to perform better
than random classification between the two populations (that
is if the proportion of individuals from each original class in
the automatically detected classes is significantly larger than
0.5). We may use a plethora of powerful non-linear classifiers
coming from Machine Learning like Support Vector
Machines, Neural Networks, Random Forests, etc. to discrim-
inate between the two populations. These algorithms have
proved to be useful in rather challenging conditions. We
may use several kinds of classifiers to make sure that if there
is a difference between the two populations, then we are ca-
pable of identifying it. For each classifier we would perform a
hypothesis test, and the test would reject the hypothesis that
the two populations can be discriminated or not by the classi-
fier. The null hypothesis is that the two populations cannot be
discriminated, while the alternative hypothesis is that the two
populations are different.

Fig. 3 Average and standard deviation of the experimental population when
responses are normalized to the mean weight.

Fig. 4 Drug concentration profiles for 3 groups of 10 animals. From bottom-
up, the groups were given 60 mg I/kg, 300 mg I/kg, 1000 mg I/kg.

Fig. 5 Average and standard deviation of the 3 groups after normalizing for
the weight and dose. The dose of 300 mg I/kg was used as reference and the
other two doses groups were normalized to be equivalent to a dose of
300 mg I/kg.
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We may also adopt a univariate approximation to the
problem of distinguishing between two populations of phar-
macokinetic parameters. We can employ non-parametric hy-
pothesis tests like Kolmogorov-Smirnov (12) to detect whether
the distribution of a given parameter (like clearance) is differ-
ent in one group or the other. If two multivariate populations
are the same, then all the univariate tests should not detect any
difference between the distribution (or any of its moments) of
the individual parameters. The converse is not true: there
might not be differences in the univariate distributions but
there exist differences in the multivariate ones.

If we perform a total of T tests, let us denote the type I and
II errors of each test as αt and βt (t= 1,2,...,T). Without loss of
generality, let us assume that there are R null hypothesis rejec-
tions (the first R hypothesis tests), and T-R non-rejections (R
may be 0). Let us also assume that the a priori probability that
the two populations are the same is π0 and that the probability
that the two populations are not the same is π1 = 1− π0. The
probability that there are R rejections if the two populations
are the same is

π0 ∏
R

t¼1
αt

� �
∏
T

t¼Rþ1
1−αtð Þ

� �
ð27Þ

Similarly, the probability that there are R rejections if the
two populations are not the same is

π1 ∏
R

t¼1
1−βtð Þ

� �
∏
T

t¼Rþ1
βt

� �
ð28Þ

The Type I and Type II errors can be set by design by
calculating the number of samples (13). For the sake of com-
pleteness, we give here the sample size formula (test on pro-
portions with a single sample when the normal approximation
is valid):

N ≥
1
4

z1−α
2
þ z1−β

Δ

� �2

ð29Þ

where Δ is the difference in proportions that we want to detect
with power 1-β. The sample size formula has to be adapted to
each kind of test, and the interested reader is referred to (13)
for a comprehensive overview.

Assuming that a set of R rejections has been observed, we
may calculate the likelihood ratio between the probability of
having two identical populations and the probability of having
two different populations

L ¼
π0 ∏

R

t¼1
αt

� �
∏
T

t¼Rþ1
1−αtð Þ

� �

π1 ∏
R

t¼1
1−βtð Þ

� �
∏
T

t¼Rþ1
βt

� � ð30Þ

If we assume that all the tests have the same confidence and
statistical power, then the equation above simplifies to

L ¼ π0
1−π0

α
1−β

� �R 1−α
β

� �T−R

ð31Þ

If L> 1, then, with the number of rejections observed, it is
more likely that the two populations are identical. Otherwise,
it is more likely that the two populations are different. See
Secs. 3.1 and 3.2 for examples of the application of this
methodology.

Using Population Parameters to Determine Derived Parameters

Wemay also use the bootstrap samples to estimate the empir-
ical distribution of derived parameters like allometric scale
parameters. Given a parameter of interest p measured in
two species (e.g. clearance), A and B, we may estimate the
allometric scale parameter as

pB ¼ pA
BW B

BWA

� �b

⇒b ¼ exp
log

pB
pA

log
BWB

BWA

0
BB@

1
CCA ð32Þ

To estimate the empirical distribution we would randomly
select two animals (one of species A and another of species B),
their weights are experimentally determined as BWA and
BWB. The parameter of interest is randomly chosen amongst
the bootstrap values estimated for the A and B animals. The
equation above gives an estimate of the allometric scale for
this specific choice of random parameters. Repeating the pro-
cedure above N times, we may empirically estimate the distri-
bution of the allometric scale factor. Note that in this way, we
produce a range of values for the allometric scale factor (along
with its probability density function) and not only a single
value as is customary in a more traditional approach. See
Sec. 3.3 for the application of this methodology.

RESULTS

In this section we illustrate the use of the different techniques
introduced above. We start by validating the use of a discrete
system approach to the determination of the drug concentra-
tion profile. Then, we show how the comparison between
populations can be used to ascertain differences between dif-
ferent therapeutic or physiological conditions. Finally, we
show the use of bootstrapping for the determination of allo-
metric scaling parameters.
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Validation of the Discrete System Approach

We estimated the pharmacokinetic parameters for 10 rats
at a dose of 300 mg I/kg (see the measured drug
concentrations in Fig. 2). We estimated the pharmacoki-
netic parameters using the standard closed-form formulas
shown in Eqs. (1), (2) and (3) (we refer to this approach as
method I), and using the discretization of the differential
equations introduced in Sec. 2.4 (method II). For each
animal, we calculated 100 bootstrap samples, making a
total of 1000 parameter estimates. The following table
shows the mean and standard deviation of the four
parameters under the two calculation methods:

Figure 6 shows the fitting for one of the animals using the
two methods. As can be seen both result into identical esti-
mates of the pharmacokinetic response of the animal.

We performed a Kolmogorov-Smirnov test to determine
whether the distribution of any of the 4 pharmacokinetic
parameters was different between the two methods. None of
the 4 hypotheses was rejected (with a confidence level of 95%).
Note that this test is rather general because it tests at the same
time all the distribution moments (mean, variance, skewness,
kurtosis, …) and percentiles.

In order to visually verify that the two populations of
parameters are really the same, we would like to plot the joint
probability density functions of both populations.
Unfortunately, the pharmacokinetic parameters belong to a
4-dimensional space (since we have 4 parameters: Cl, Vc, Q
and Vp). For this reason we cannot visualize the overlap be-
tween the two sets of parameters. Instead, we can reduce the
dimensionality of the data. With this purpose, we performed a
Principal Component Analysis of the two sets at the same time
(so that if there is a difference between the two, this difference
can be shown on the same low-dimensional space). Figure 7
shows the first two principal components of the two sets of
parameters (they explain 99.99% of the variance). We can
see that the two populations perfectly overlap.

Finally, we performed 10 random subsets of 500 samples
from the two populations, trained 10 Support Vector
Machines and classified with each one of them the remaining
500 samples. None of the classifiers was capable of performing a
classification significantly different from a random classification,
implying the non-separability of the two sets of parameters.

In total we have performed 14 hypothesis tests. The statis-
tical power with N= 1000 samples for testing if the proportion
of misclassified individuals is 0.5 is 0.9355. None of the null
hypotheses were rejected, consequently the ratio between the

probability of coming from a single population and the prob-
ability of coming from different populations is approximately
(see Eq. (33))

L ¼ 0:05
0:9355

� �0 0:95
0:0645

� �14

¼ 2:2⋅1016 ð33Þ

which is much larger than 1. We can, therefore, conclude that
the parameters estimated by fitting a non-linear function (the
classical approach) and the concentration profile generated by
a discrete system are statistically indistinguishable.

Comparison between Populations

We now show how the methodology developed in this paper
can actually discriminate between two different populations.

Fig. 6 Example of the fitting of a two-compartment model using the closed
form formula and the numerical approximation of the differential equation.

Fig. 7 First two principal components of the pharmacokinetic parameters
estimated with the classical approach (blue circles) and the discrete system
approach (black crosses).

Cl [mL/min] Vc [mL] Q [mL/min] Vp [mL]

Method I 1.9 ± 0.22 70.4 ± 11.1 0.29 ± 0.04 599.5 ± 106.0

Method II 1.8 ± 0.23 71.0 ± 11.3 0.29 ± 0.04 601.9 ± 105.6
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We do so by comparing the bootstrap estimates of the phar-
macokinetic parameters for a dose of 300 mg I/kg and a dose
of 60 mg I/kg (see Fig. 4) and whose parameters are summa-
rized in the following table.

Cl [mL/min] Vc [mL] Q [mL/min] Vp [mL]

300 mg I/kg 1.8 ± 0.23 71.0 ± 11.3 0.29 ± 0.04 601.9 ± 105.6

60 mg I/kg 1.4 ± 0.22 50.3 ± 11.1 0.25 ± 0.04 74.0 ± 106.0

We performed 14 hypothesis tests as we did in our previous
examples. Figure 8 shows the projection of the parameters
onto the PCA space.

In this case, all the null hypotheses were rejected. The ratio
of probability of coming from a single population or from two
populations is

L ¼ 0:05
0:9355

� �14 0:95
0:0645

� �0

¼ 1:6⋅10−18 ð34Þ

Consequently, we can safely conclude that there are two
populations of pharmacokinetic parameters.

We performed the same kind of analysis distinguishing
between female and male animals within the same dose
(300 mg I/kg). The following table summarizes the
parameters.

Three out of the four univariate tests were rejected with
p values well below 10-3 (the tests comparing the distributions
of Cl, Vc, and Q), while the test corresponding to Vp was not
rejected. For illustration purposes we show in Fig. 9 the histo-
gram of the Q values for the female (top) and male (bottom)
animals. Although the set of parameters occupy the same
range of values, the distribution is not the same. The null
hypothesis that these two distributions are the same was
rejected by the Kolmogorov-Smirnov test with a p value of
4.8 ∙ 10−4 showing the power of the methodology illustrated in
this article.

None of the classifiers was capable of separating the two
populations. The likelihood ratio between the probability of
coming from a single population and coming from two pop-
ulations is

L ¼ 0:05
0:9355

� �3 0:95
0:0645

� �11

¼ 1:1⋅109 ð35Þ

So that it is much more likely that female and male
animals do not differ in their pharmacokinetic parameters
than they do. For illustration purposes, Fig. 10 shows the
PCA mapping of the two populations of parameters. We

can see that they are rather intertwined and probably the
univariate rejections are more due to the lack of data (we
only had 5 animals of each sex) than to a real difference
between populations.

Distribution of Derived Parameters

As shown above, we may use the bootstrap estimates of differ-
ent species to calculate the statistical distribution of derived
parameters. This is a clear advantage over traditional meth-
ods where a single point estimate of the parameter is produced
(Bayesian (14) or stochastic (15) methods are also capable of
estimating a distribution of the model parameters). As an il-
lustrative example the distribution of an allometric scaling
factor (Eq. (32)) is presented. For the compound studied in this
article, we had measurements for 10 rats at a dose of 300 mg
I/kg and 3 dogs at a dose of 600 mg I/kg. We could use the
methodology described in this article based on bootstrapping
to calculate the parameter b between any set of parameters.
We did so for the scaling of the clearance Cl. Figure 11 shows
the estimated distribution and the following table the param-
eters involved.

Note that the so calculated allometric scaling is dependent
on the specific doses employed and cannot be generalized to
any other dose. More experiments with different doses could
have been performed, and instead of having a single scaling
factor we could have calculated a surface of factors dependent
on two variables (the two doses employed in the different
animals).

Fig. 8 First two principal components of the pharmacokinetic parameters
estimated for doses of 300 mg I/kg (blue circles) and 60 mg I/kg (black
crosses).

Cl [mL/min] Vc [mL] Q [mL/min] Vp [mL]

Male 1.9 ± 0.22 73.0 ± 10.2 0.30 ± 0.04 602.9 ± 108.2

Female 1.8 ± 0.23 69.2 ± 11.4 0.29 ± 0.05 615.0 ± 109.8

Weight [g] Cl [mL/min]

Rats 228 ± 16 1.8 ± 0.2

Dogs 9700 ± 540 30.1 ± 5.2
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CONCLUSIONS

In this article we have presented a new methodology to ana-
lyze population pharmacokinetic data when there is an im-
portant lack of experimental data. The conclusions drawn
from the methodology are limited by the quality and repre-
sentativeness of the collected data. However, in many exper-
imental situations it can be used as a way to propose future
lines of research with the data at hand (the number of animals

used in these experiments are typical in many laboratory
experiments). We have also analyzed the connection between
a discrete system approach and the classical pharmacokinetic
approach to the identification of system parameters. We have
reasoned that the discrete system approach is able of analyzing
data with an arbitrary therapeutic regimen, and shown that,
as expected, in the particular case of a single bolus, it produces
the same results as the classical approach. For more compli-
cated regimens, there is no closed formula in the classical

Fig. 9 Histogram of the Q values
estimated by bootstrapping for the
female (top) and male (bottom)
animals at a dose of 300 mg I/kg.

Fig. 10 First two principal components of the pharmacokinetic parameters
estimated for female (blue circles) and male (black crosses) animals at a dose of
300 mg I/kg.

Fig. 11 Distribution of the allometric scaling parameter for the clearance
between rats at a dose of 300 mg I/kg and dogs at 600 mg I/kg.
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approach, although they are easily handled by the discrete
system approach. This represents a clear advantage of the
system approach over the classical approach to the calculation
of the concentration profile.
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