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Abstract 19 
 20 

Slightly more than half of the solar radiation that passes through the atmosphere and 21 
reaches the earth’s surface is infrared. Over the past few years, many papers have been published 22 
on the possible positive effects of receiving this part of the electromagnetic spectrum. In this 23 
article we analyse the role of mitochondria in the supposed effects of infrared light based on the 24 
published literature.  It is claimed that ATP synthesis is stimulated, which has a positive effect on 25 
the skin by increasing fibroblast proliferation, anchorage and the production of collagen fibres, 26 
procollagen, and various cytokines responsible for the wound healing process, such as 27 
keratinocyte growth factor. Currently there are infrared light emitting equipment whose 28 
manufacturers and centres where this service or treatment is offered claim that they are used for 29 
skin rejuvenation among other positive effects. Based on the literature review, it is necessary to 30 
deepen the scientific study of the mechanism of absorption of infrared radiation through the skin 31 
to better understand its possible positive effects, the risks of overexposure and to improve the 32 
consumer health protection . 33 

Key words: mitochondria, R/NIR, ATP, ROS, metabolism, BKCa, cellular health.  34 

 35 
1. Introduction  36 

The mitochondrion, like chloroplasts, is not a cell organelle with a similar structure to 37 
the rest. It is an autonomous system that has unique characteristics in terms of having a double 38 
outer membrane, its own genetic material, being the system that generates and manages cellular 39 
energy, being the manager of cell motility, acting against free radicals and in calcium 40 
homeostasis, participating in apoptosis and proliferation and having in animals an offspring only 41 
from the female parent to the new gametes (1), i.e., no mixing of genetic material is generated. It 42 
is true that there are controversies about whether a contribution of mtDNA from the father can 43 
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be generated (2), but it seems that the results that have been obtained in this regard are research 44 
artifacts (1,3). 45 

The genetic material is a short, non-condensed ring of DNA of which each 46 
mitochondrion has many copies. It is characterized by a high degree of variability due to the 47 
mutations that occur (4). Briefly and summarized, the catabolic pathways generated in 48 
mitochondria are as follows:  49 

Glycolysis is the first of the metabolism reactions that requires some metals to be carried 50 
out . The anabolic ATP enzyme requires magnesium ion (Mg2+) to complex the negative charges 51 
of the phosphates, thus enhancing the attack by the active centre (5–7). Another metal that acts in 52 
this part of metabolism is zinc; high levels in the medium increase the enzymatic capacity of the 53 
cycle (8,9). 54 

The Krebs cycle is a chain of reactions essential for the cell to obtain reducing power 55 
and energy (10). Within this cycle, some metals are essential for its proper functioning, such as 56 
manganese. This metal is important in several manganese-activated enzymes, including pyruvate 57 
carboxylase, which can also be activated by other ions, such as magnesium. Therefore, adequate 58 
mitochondrial levels of Mg2+ are required to induce metabolism by pyruvate carboxylase in case 59 
of manganese deficiency (11). 60 

At the end of the catabolic cascade, the respiratory chain generates energy in the form 61 
of ATP and controls body temperature in mammals (12). For heat generation, the mitochondrial 62 
respiratory chain is interrupted by the uncoupling protein type I (UCP-1) present in brown 63 
adipocytes in the neck area (13). The respiratory chain is composed of protein complexes that 64 
have heme-based organic systems as active groups (14). 65 

Skin contains chromophores whose scattering and absorption coefficients are different 66 
for each wavelength in the ultraviolet, visible and infrared range. The most important 67 
chromophores are melanin and oxyhaemoglobin (15).  68 

The penetration capacity of  radiation is strongly dependent on wavelength.  Thus, 69 
radiation with wavelengths between 405 and 505 nm (violet and blue) have the ability to 70 
penetrate to the upper dermis (16). The absorption of blue light by melanin is 80 times higher 71 
than that of red light (17), indicating that blue light is capable of generating greater changes at 72 
the molecular level than red light with respect to melatonin. Wavelengths of 595, 632, 694, 755, 73 
and 800 nm are progressively absorbed deeper into the dermis. Red light penetrates to 74 
approximately 4-5 mm depth from the surface (16). Radiation between 980 and 1064 nm 75 
penetrates the subcutaneous fat layer (18) and for longer wavelengths, there is insufficient 76 
information on their penetration into the skin and their photobiological effects (15). There has 77 
been a significant advance in the knowledge of the depth and form of light absorption in the skin 78 
thanks to Monte Carlo simulation based on the generation of different photoacoustic (PA) signals 79 
depending on the greater or lesser reactivity of the chromophores to light (19). 80 

Its structure is that of a homodimer, each of the dimers having 3 protein subunits, where 81 
subunits I and II catalyze electron and proton exchange reactions, and subunit III appears to act 82 
as a conduit to mobilize oxygen towards the active nucleus. Looking further into the copper 83 
subunits, subunit II has a double chelated copper atom (CuA) that is the electron gateway and 84 
subunit I has 12 α-helices arranged in groups of four, forming a "cloverleaf" with three cavities. 85 
One cavity houses a heme A that is bound between two histidine residues. The second cavity 86 
contains the reactor core where oxygen is reduced. This core has a second type A heme called 87 
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heme a3, together with a histidine-bound copper, CuB. The iron of heme a3 is on one side in direct 88 
contact with CuB and on the other side is bound to a histidine residue on its proximal side. 89 
Between the iron and CuB are the ligands of H3O+ (20–23). This subunit is also the buffer for 90 
reactive oxygen species produced during the process, so mutations in it increase the 91 
concentration of reactive oxygen species (ROS) that induce mutations in DNA. As a result, 92 
humans with deficiencies in this complex or mutations in it have a shorter lifespan (24). 93 

Briefly, the detailed mechanism is a cycle in which the heme nucleus a3 begins as an 94 
oxidized form where both copper (Cu2+) and heme are assumed to be hydroxylated. An electron 95 
is then transferred and one of the protons of the hydroxides is used to generate water, reducing 96 
the copper to Cu+. The result is a highly reactive oxygen group that attacks the second hydroxyl 97 
and generates a second water molecule.  The heme is then released to bind an O2 molecule and 98 
generate two oxidative products, superoxide and a radical on the proximal thyroxine, derived 99 
from the donation of the extra electron from copper, which is converted back to Cu2+. The next 100 
step is the influx of extra hydrogen and an electron to return to the initial state of the cycle (25–101 
28). Copper deficiencies induce a decrease in complex IV without affecting the rest of the 102 
complexes in which copper is not in their active centres. When copper intake is restored and 103 
physiological levels are regenerated, enzyme activities recover normal levels of functionality (29–104 
32). 105 

In addition to copper, iron is another element of relevance within the components of 106 
the respiratory chain. This metal is one of the most important for skin chromophores. Of the 40 107 
different proteins that make up the respiratory chain, 6 have heme-type nuclei, 2 have coppers 108 
that interact in one way or another with iron, and other 6 have iron coordinated with sulphur 109 
(33). These proteins with prosthetic groups are cytochrome C, succinate dehydrogenase and 110 
cytochrome bc1. There are others that have iron as a cofactor, such as iron monooxygenases and 111 
iron dioxygenases, which are important as members of the AlkB group of ferrous dioxygenases 112 
that mediate apoptosis and cell necrosis. (34). 113 

The sun is the most important source of energy for the Earth and represents the engine 114 
of climate as well as multiple biological processes. The radiation emitted by the sun is considered 115 
full-spectrum light, as it ranges from ultraviolet (UV) to infrared (IR), wavelengths vital for plant 116 
and animal life but also for humans. However, the whole spectrum extends to high energy 117 
radiation (i.e., cosmic, gamma and x) that is reflected or absorbed by the shielding of the 118 
atmosphere and the earth's magnetic field. The protective role of the atmosphere also extends to 119 
UV-C radiation (100-280 nm), which is completely absorbed by the stratospheric ozone layer. UV-120 
B radiation (280-315 nm) is also largely blocked by this layer and only represents a small 121 
percentage of the UV solar radiation at the earth’s surface compared to UV-A (315-400 nm), which 122 
is attenuated by air molecules and aerosols. The ratio UV-A/UV-B in sunlight is about 17 when 123 
the solar disk is close to the zenith (35) The largest amount of radiation reaching the Earth's 124 
surface is detected in the visible (39%) and IR (56%) range (36), the latter also divided into IR-A 125 
(780-1400 nm), IR-B (1400-3000 nm) and IR-C (3000 nm-1 mm). IR-A is also called near infrared 126 
radiation (NIR) and is the largest fraction in the IR range, I.e., 30% of the total solar radiation (37). 127 
The total NIR reaching the earth’s surface, as in other spectral ranges, depends on astronomical, 128 
geographical and meteorological conditions. Unlike UV radiation, IR radiation is mostly direct 129 
component from the solar disk and the diffuse fraction coming from scattering with air molecules 130 
is very small (38). For this reason, when the disk is blocked by clouds or when the sun is close to 131 
the horizon, IR radiation in general and NIR in particular is considerably reduced. Figure 1 shows 132 
solar spectral irradiance at the ground in the visible and NIR ranges under different conditions 133 
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of latitude, time of the day and cloudiness. As the latitude or the time of the day increases, the 134 
global solar irradiance decreases both in the visible and NIR ranges since solar rays pass through 135 
more atmospheric mass. Similarly, cloudiness decreases the irradiance reaching the ground but 136 
the extinction depends on the cloud cover and its optical properties. Figure * shows two possible 137 
cases of overcast conditions by low clouds, although with different number and characteristics of 138 
clouds droplets.   139 

Figure 1: Solar spectral irradiance in the visible and near infrared ranges under different 141 
conditions of latitude, local time and cloudiness. Spectra referred as CLOUD and CLOUD2 are 142 
shown as examples of different overcast situations. Spectral irradiance are represented 143 
considering the incidence on a horizontal surface located at sea level.  144 

The aim of this work is to seek scientific justification for the possible skin regeneration 145 
effects claimed to be produced by infrared emitting lamps through stimulation of mitochondrial 146 
metabolism, as well as information on the possible positive effects of the emitted energy freely 147 
offered to consumers by the suppliers of this equipment.  148 

2. Materials and Methods 149 

The criteria used for the bibliographic search were homogenized in order to have a 150 
common criterion for searching and filtering the information accessed through PubMed, 151 
ScienceDirect and Scopus. The keywords and their synonyms or derivatives “near infrared”, 152 
“ROS”, “mitochondria”, “ATP”, “NOS”, “chromophore” and “BKCa” were used as search criteria. 153 
These keywords were used in combination with the inclusion criteria “retinal”, “copper”, “iron”, 154 
“magnesium”, “wavelength”, “patch”, “OLED”, “LED”, “equipment”, “skin”, “treatment”, 155 
“effects”, “irradiation”, “regeneration”. 156 
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Figure 1 shows the process flow diagram that has been maintained throughout the 157 
development of this manuscript. 158 

159 

Figure 1. PRISMA(39) flow chart for literature search and selection of articles. 160 

From the general search of the articles used, only those published during the 10 years 161 
prior to the date of the search were considered (with exceptions, such as legislation, guidelines 162 
or references to well-established theories). In addition, all publications dealt with infrared solar 163 
radiation and its impact on living beings, focusing on the effects on humans. We considered both 164 
exposures to sunlight and to artificial sources, such as large equipment for treating entire areas, 165 
as well as small equipment for treatment of specific areas. Regarding the radiant source, 166 
equipment where the illumination is generated by LED, laser and other specific sources have 167 
been included. Natural and artificial exposures for indoor, outdoor, therapeutic and workplace 168 
treatment and regeneration purposes were considered. Finally, all articles had to be originally 169 
written in English or with an official version published in English, with the exception of laws or 170 
guidelines taken or to be taken into account for the elaboration of this review that are in the 171 
language of the country in which they were published. 172 

Regarding the exclusion criteria considered for the elaboration of the work, publications 173 
that did not have the keywords “wavelength” or “mitochondria” were excluded. 174 

3. Results: 175 
3.1 Spectral sensitivity on retin and skin: 176 

At the retinal level, it has been described that the use light at 670 nm for 5 minutes per 177 
day generates or induces an increase in the regeneration of retinal tissue cells (40–44). Despite 178 
reaching the same conclusion, there are two approaches to explain how this effect develops. One 179 
theory indicates that the regeneration is due to the action of NIR on complex IV of the respiratory 180 
chain (45), whereas the other theory indicates that the mechanism is through viscosity change 181 
(40).  182 

According to the first mentioned theory, there is a change in the excited states of the 183 
copper A (diatomic CuA) and copper B (mono-atomic CuB) atoms of the respiratory chain when 184 
they are excited with 670 nm radiation. One of the underpinnings of this theory is that when the 185 
retina is exposed to  420 nm (blue light) or 670 nm radiation, no change in the ratio of oxidized to 186 
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unoxidized hemoglobin is observed at the second wavelength, but a significant increase in total 187 
hemoglobin concentration is detected. This fact partly supports the proposal that the application 188 
of 670 nm reduces the redox state of complex IV (Oxidase C or COX) of the respiratory chain (41).  189 

It should be noted that the chromophore formed by copper A (CuA) of COX contributes 190 
85% of the absorbance at a wavelength of 830 nm generating its reduction, which is enhanced if 191 
melatonin is present in the medium. This band is known to be predominant when CuA is 192 
oxidized because it is non-existent when CuA is completely reduced (46). When CuB is in the 193 
reduced state, the maximum absorption is detected at 443.5 nm (blue) and 603.3 nm (orange)(47). 194 
Therefore, it can be indicated that infrared can vary the redox states of complex IV, but especially 195 
in CuA if radiation at 830 nm is incident on it.  196 

Recent studies have further explored the use of 670 nm wavelength for retinal 197 
regenerative medicine. With this wavelength and an application for 3 minutes per day (preferably 198 
in the morning), a significant improvement in retinal cell regeneration with an increase in ATP is 199 
achieved. The most likely mechanism is described as the change in viscosity/pumping of 200 
nutrients and waste metabolites due to temperature changes between the fluid layers in the 201 
cytoplasm and mitochondria by the long wavelengths (40,48). The retina has a high concentration 202 
of mitochondria, so it is important to maintain their health and function by removing ROS 203 
generated by metabolic processes and increasing ATP. Normally, the goal is to achieve an amount 204 
of 40 mW/cm2 (49,50) but recent research has arrived at an estimate of approximately 8 mW/cm2 205 
(40).   206 

The therapeutic use of infrared radiation is aimed at generating ROS and increasing 207 
ATP generation. This increase in ATP is supposed to be achieved by the excitation of Cytochrome 208 
C Oxidase generated by the jet of photons arriving in the near-infrared (51). 209 

Ferrous(ic) groups absorb at a wavelength between 508 nm and 593 nm depending on 210 
the organic structure in which they are complexed (52) but do not absorb infrared radiation as 211 
they reflect it completely. The target of infrared action is the system formed between the organic 212 
part and the copper atoms at complex IV. It has been shown, using exsanguinated mouse and cat 213 
brains, that the copper cytochrome oxidase has an absorption maximum  wavelength between 214 
830 nm and 920 nm (53) in NIR. It should be noted that in tissues perfused with blood, the 215 
cytochrome is not correctly detected due to the masking by oxyhemoglobin in the red blood cells 216 
(53). 217 

The application of 670 nm pulsed wavelength is mostly absorbed by the water of the 218 
cellular internal contents with a relatively residual incidence of these photon beams on complex 219 
IV of the cellular respiratory chain. The water is distributed in the form of nanosized monolayers 220 
(48,54). Pulsed infrared light strikes on these sheets, causing them to expand and in turn 221 
generating a decrease in their viscosity (55,56) . These changes generated during the pulses cause 222 
the cells to expand and contract, which ultimately induces the entry of intercellular fluid as if 223 
they were sponges, sucking up the medium during the dark phase generated by the laser flicker 224 
(57). Ultimately, the physical mechanism of uptake is transmembrane convection. This effect 225 
explains how HeLa cells absorb chemotherapeutic substances from the medium when irradiated 226 
with pulsed light at 670nm (57). Therefore, in the end, the mechanism by which ATP is increased 227 
and ROS is reduced is only induced by the increased substrate availability  and the increased 228 
elimination of toxic substances. It is not known whether this theory considers that enzyme 229 
capacity is saturable and this fact can be taken into account to demonstrate its importance in the 230 
mechanism. 231 



7 
 

Mitochondria have several mechanisms to increase ATP anabolism and reduce 232 
wavelength-independent ROS, one of which is the use of ATP-sensitive K+ channels highly 233 
present in cardiac and brain tissue. These channels can decrease ROS concentration when they 234 
remain closed (58–60). The state of opening or closing is considered to depend on the pH of the 235 
matrix, the alkaline state being an inducer (61) of the internal Mg2+ concentration and the 236 
intracellular ATP/ADP equilibrium (62). These channels are important as they act as sensors that 237 
reduce the amount of ROS when it increases locally in the cell cytosol (63). The large-conductance 238 
calcium- and voltage-activated K+ channel (BKCa) is indirectly activated by the action of light at 239 
670 nm, by increasing nitrogen monoxide (NO) levels (64,65). These BKCa channels are involved 240 
in modulating cellular Ca2+ and K+ levels. In therapeutics, BKCa activation is used to palliate the 241 
damage caused by cardiac reperfusion after an ischemic state (66).  242 

When the tissue is perfused again, what is called ischemia-reperfusion (I/R) damage, an 243 
overload of ROS and calcium in the mitochondria is detected. Activation of BKCa with agonists 244 
during reperfusion, reduces ROS levels and on the other induces stabilization of calcium levels, 245 
which prevents or delays the opening of the mitochondrial permeability transition pore (mPTP). 246 
The mPTP are the initiators of cell apoptosis due to irreparable internal damage. ATP levels 247 
remain stable because there is no collapse in the polarization of the mitochondrial membrane. 248 
(67). Among the activators proposed to prevent I/R damage, NO stands out as a good activator, 249 
either directly or indirectly through the activation of the guanosine monophosphate cycle 250 
(cGMP). (68,69). As a summary, light incidence at 670 nm induces an increase in NO that increases 251 
vasodilation and the opening of BKCa channels that stabilize cellular Ca2+ levels and reduce ROS 252 
(67). 253 

In the skin, BKCa has been reported at the level of fibroblasts, which are excitable with 254 
NO (70,71). Its existence suggests that at the dermal level in the skin the same occurs as in cardiac 255 
tissue after revascularization when NO is used as a channel modulator. When R/NIR is applied, 256 
NO levels increase inducing vasodilatation that triggers the BKCa cascade. This cascade ultimately 257 
helps to remove ROS from the cell cytoplasm and maintains or increases ATP levels by stabilizing 258 
mitochondrial membrane potentials. 259 

3.2 Published studies on the effects of red and IRa absorption.  260 

There are many studies that justify the effects generated when cells are irradiated with 261 
wavelengths in the infrared range. It has been observed that exposure to IR not only produces 262 
mitochondrial improvements, but also acts on structures as essential to the cell as DNA. This 263 
increase in DNA synthesis promotes mitosis and cell regeneration. If fibroblast and keratinocyte 264 
cell cultures are irradiated, a proliferation that enhances their regeneration is demonstrated. 265 
Regeneration of fibroblasts and keratinocytes is essential for skin recovery in patients who have 266 
suffered burns, enhancing the natural regeneration of their own tissues as well as the implants 267 
that can be performed in these patients. Table 1 shows a selection of publications demonstrating 268 
the effects of radiation on cells and tissues. (72–76)   269 

Table 1. Summary of articles on the effect of infrared radiation. Research since 2000 is included because of 
its relevance. 

Relevant information on the biological interaction of IR wavelengths Ref. 

Biological tissues are transparent to wavelengths from 650 nm to 925 nm. Absorption by deoxyhemoglobin < 
790 nm. Absorption by oxyhemoglobin > 790 nm. 

(72) 

Wavelengths from 630 nm to 638 nm increase ATP levels. (73) 

Maximun ATP production is 810 nm by mitochondrial complex-IV. (48) 
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The 632.8 nm wavelength stimulates keratinocyte cell proliferation and growth factor macrophage secretion. (76–78) 

 The 660 nm wavlength regulates the levels of fibroblastic growth factor. (75,76,79) 

812–846 nm is the wavelength range to enhance DNA synthesis. (74) 

780 nm can stimulate proliferation of keratinocyte cultures. (80,81) 

860 nm can stimulate proliferation of fibroblast cultures. (82) 

Wavelengths 680 nm, 730 nm and 880 nm repair damage tissues including DNA structures. (83) 

Wavelengths longer than 950 nm are absorbed by water and can cause an increase in skin temperature. (84) 

  
There is highly relevant scientific evidence on skin regeneration with OLED, LED and 270 

laser systems (Table 2). Of all of them, it is important highlight  the thin film OLED and LED 271 
systems (80,81) since they are portable, easy to handle, no thicker than a healing dressing and are 272 
inexpensive to manufacture. These types of systems are very interesting for both focal and 273 
generalised organic recovery treatments, as they do not generate damage nor are they 274 
pharmacological treatments with the adverse effects that these entail.  275 

Table 2. Different uses of waves on damaged tissues with the aim of regeneration.  

Equipment used in scientific experiments (since 2017) Results Ref. 
Ultra-slim OLED with thickness around 6 µm. Emission 
at 630 nm, 650 nm, 670 nm and 690 nm during around 

100 h. 

Regeneration artificial skin by up 70%. Better results with 670 nm use 
during 10 min at 3 J/cm2 every 48 h. 

(85) 

Green LED at 520 ± 30 nm, 180 mW; 240 J/cm2; and Red 
LED at λ630 ± 10 nm, 300 mW; 36 J/cm2. 

Better re-epithelialisation in the red-light group between 14 and 21 
days after the start of treatment. 

(86) 

LED with a weight of 5 g and a thickness of 0.1 mm; 
emission wavelength: 470, 530, 633 nm; power density 

levels 0–20 mW/cm2. 

Low driving temperature and uniform heat distribution, without 
thermal or inflammatory tissue damage. With excellent performance 

in the wound healing test and an effective fibroblast proliferation 
stimulation and fibroblast migration 

(87) 

Laser every day during 7 days at 655 nm, 150 mW, 2 
J/cm2 at the bed of the ulcer and infrared 808 nm, 200 

mW, 6 J/cm2 to irradiate ulcer margins. 

Patients treated with lasers required less skin ingestion than those 
treated with classic dressings. (88) 

Laser at 670 nm, 9 mW, 0.031 W/cm², applied every 48 
hours, total dose of 16 J/cm2 in mice skin.  

On day 21, an increase in LTCD8+ and a decrease in CD68+ was 
observed. In addition, neo angiogenesis was observed at the end of 

treatment with increased CD31+, CD8+, NG2+ and alpha actin 
positive smooth muscle pericytes. 

(89) 

  
3.3 Commercially available non-health user access equipment.  276 

There is equipment on the market designed to treat specific areas of the body as well as 277 
large areas of the body. They range from large panels of more than one meter in length where red 278 
and infrared LEDs are combined to small, portable systems such as slippers with built-in LEDs. 279 
Among the equipment described in Table 3, the face mask (manufacturer 9) stands out, in which 280 
there is not only red  radiation, but also radiation of wavelengths corresponding to blue, green, 281 
yellow and violet can be applied. This product is sold asa comprehensive skin care system, as it 282 
treats the area with all the wavelengths that photobiology defines as enhancing cell regeneration 283 
and rejuvenation. 284 

Table 3. Summary of easily accessible equipmentfor consumers to purchase online and at a cheap price. 

Manufacturer Equipment structure Effects 
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1 Curved panel, supported on a hanger, with 
tubes to irradiate the user from above. 

Reduction of skin wrinkles, softer and firmer feel skin, 
youthful look, stronger and healthy-looking hair and nails, 

increase new capillaries generation. 

2 Mercury vapor lamps emiting infrared Skin resurfacing 

3 Pad for near-infrared irradiation from the 
lower zone. 

Induces irradiances that penetrate 10 times more than the 
heat emitted by traditional pads (around 6 cm). Reduces 

lactic acid, increases blood flow and reduces inflammation. 

4 LED flat panel with combination of red (660 
nm) and infrared (850 nm) light 

Reduction of skin wrinkles, softer and firmer skin, youthful 
appearance, stronger and healthier looking hair and nails, 

increased generation of new capillaries. 

5 Infrared LED emitting helmet (650 nm) 
System designed to regenerate hair in people with alopecia 

and for those who do not have alopecia can increase the 
volume and density of hair. Increases blood flow. 

6 Flexible foil and band to transform 
armchairs into 850 and 660 nm emitters. 

Weight loss, reduces joint pain, treats inflammation, helps 
with obesity, relaxes, 30 min/day gives the same effect as 

walking 1 h, 30 min swimming or yoga, burns 3000 calories, 
200 sit-ups and 2500 vibration. 

7 Ceiling pendant panel with LEDs at 
wavelengths of 660 nm and 850 nm.  

Increases collagen levels in the skin, improves muscle pain, 
relieves stiffness, improves joint pain, swelling, arthritis, easy 

and painless treatment, improves skin and rejuvenates it. 

8 
Ultrasound, EMS and infrared, no 

information on technical characteristics is 
provided. 

For facial and body beauty, EMS slimming treatment, infrared 
skin rejuvenation, improve skin texture, anti-wrinkle, quickly 
and effectively reduce and relieve severe chronic back pain 

and other types of body pain, regulate internal secretion and 
accelerate fat consumption. 

9 
Infrared house slippers. 45 LEDs at 660 nm 
and 45 LEDs at 880nm. Max. time use 40 

min. 

Used in tendonitis, plantar fasciitis, hell pain, nerve irritation, 
hell spurs and arthritis. 

10 

Full face and neck mask with led 
phototherapy in all colors, red at 660nm, 

blue at 470nm and 500nm, green at 
550nm, yellow at 580nm, purple or violet 

at 420nm. Max. time use 15 min. 

Improves skin elasticity, reduces and prevents wrinkles, helps 
fight oily areas, reduces pores, reduces scars, evens skin tone, 

improves circulation, inhibits melanin pigment formation. 
Boost immune system, accelerate blood circulation. 

Temporary relief of pain and stiffness, improves sleep quality. 
Helps activate collagen, facilitates skin collagen growth, 

promotes excretion of skin bacteria. Increases oxygen to lock 
in skin moisture. 

 285 

4. Conclusiones. 286 
- The review has brought together three possible mechanisms of action put forward 287 

by different researchers. The variation of the volume/viscosity, the excitation of the 288 
copper of the respiratory chain and the increase of the amount of NO that modifies 289 
the opening/closing state of the BKCa channels. 290 

- After analyzing the scientific literature on this subject, the mechanism of action at 291 
the mitochondrial level and on the respiratory chain is not clear and its study 292 
should be a priority objective. The different types of equipment emitting infrared 293 
radiation can be purchased by consumers without any control or information on 294 
the energy emitted . Therefore, further studies are needed on which of the three 295 
possible mechanisms of extra ATP generation and ROS reduction inside the cell 296 
after the incidence of red/infrared radiation.  297 
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- Health authorities should consider making it compulsory for the suppliers of these 298 
machines to warn consumers of risk situations such as, for example, people with 299 
very damaged or blemished skin and therefore with cells with a possible high level 300 
of mutations. 301 

- Whatever the main mechanism, the important thing is that infrared irradiation 302 
generates significant improvements at the tissue level in skin fibroblasts and 303 
keratinocytes. It has been demonstrated that in the end the cellular profile is 304 
improved due to a decrease in NOS and an increase in ATP. 305 

- Presence of iron as a cofactor in such important processes as the induction of cell 306 
apoptosis by necrosis has to be considered of high importance when 307 
photobiological therapies are proposed. The change of state from ferric to ferrous 308 
and vice versa can be the reason for the activation or inactivation of this mechanism, 309 
which is crucial for tumour processes. In the case of mutagenic stem cells it would 310 
be important to activate this mechanism to induce their destruction earlier to 311 
resolve localised tumours as well as to prevent metastasis. 312 
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