f‘ animals bPy

Article
Molecular Characterization of Cryptosporidium spp. in
Cultivated and Wild Marine Fishes from Western

Mediterranean with the First Detection of Zoonotic
Cryptosporidium ubiquitum

Samantha Moratal 1©, Maria Auxiliadora Dea-Ayuela 2,02 Alba Marti-Marco 1, Silvia Puigcercos ,

Naima Maria Marco-Hirs !, Candela Doménech !, Elena Corcuera !, Jests Cardells I3, Victor Lizana
1,3

and Jordi Lépez-Ramon

check for
updates

Citation: Moratal, S.; Dea-Ayuela,
M.A.; Marti-Marco, A.; Puigcercés, S.;
Marco-Hirs, N.M.; Doménech, C.;
Corcuera, E.; Cardells, J.; Lizana, V.;
Lépez-Ramon, J. Molecular
Characterization of Cryptosporidium
spp. in Cultivated and Wild Marine
Fishes from Western Mediterranean
with the First Detection of Zoonotic
Cryptosporidium ubiquitum. Animals
2022, 12,1052. https://doi.org/
10.3390/ani12091052

Academic Editors: Giovanni Lanteri,
Carmelo Iaria and Jessica
Maria Abbate

Received: 21 March 2022
Accepted: 17 April 2022
Published: 19 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1
1,3

Servicio de Anadlisis, Investigacion y Gestion de Animales Silvestres (SAIGAS), Veterinary Faculty,

Universidad CEU-Cardenal Herrera, Tirant lo Blanc Street 7, Alfara del Patriarca, 46115 Valencia, Spain;

samantha.moratalmartinez@uchceu.es (S5.M.); alba.martimarco@uchceu.es (A.M.-M.);

puigomsil@gmail.com (S.P.); naimasuntesausias@gmail.com (N.M.M.-H.); zapatacandela@hotmail.com (C.D.);

e.corcuera97@gmail.com (E.C.); jcardells@uchceu.es (J.C.); victorlizana@uchceu.es (V.L.);

jordi.lopezl@uchceu.es (J.L.-R.)

Pharmacy Department, Universidad CEU-Cardenal Herrera, Santiago Ramoén y Cajal Street,

Alfara del Patriarca, 46115 Valencia, Spain

3 wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autonoma de Barcelona (UAB),
Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain

*  Correspondence: mdea@uchceu.es

Simple Summary: Cryptosporidium is a widespread pathogen that infects a broad range of vertebrates,
including humans, in which it is one of the main causes of diarrhea worldwide. Marine fishes also
harbor Cryptosporidium species, including zoonotic ones. The goal of this study is to evaluate the
presence of Cryptosporidium species in edible marine fishes using molecular tools. The area of study,
located in the Western Mediterranean, is an important area for marine fish production and capture.
The following three groups were studied: cultivated fish, wild fish that aggregate in the surroundings
of marine fish farms and wild fish from extractive fisheries. Results show that the most affected group
is the group of wild fish from the vicinity of fish farms. Two species were mainly identified, C. molnari
(fish specific) and zoonotic C. ubiquitum. The presence of zoonotic C. ubiquitum in two European sea
bass (Dicentrarchus labrax) highlights a potential risk for fish consumers.

Abstract: Fish not only harbor host-specific species/genotypes of Cryptosporidium, but also species
like zoonotic C. parvum or anthroponotic C. hominis, which can pose a risk for fish consumers. This
study aims to investigate fish cryptosporidiosis in an important aquaculture and fishery area of the
Western Mediterranean (Comunidad Valenciana, Spain). We analyzed 404 specimens belonging to
the following three groups: cultivated fish (N = 147), wild synanthropic fish (N = 147) and wild fish
from extractive fisheries (N = 110). Nested PCR targeting the 185 rRNA gene, followed by sequencing
and phylogenetic analysis, were performed. Positive isolates were also amplified at the actin gene
locus. An overall prevalence of 4.2% was detected, with the highest prevalence in the synanthropic
group (6.1%). C. molnari was identified in thirteen specimens from seven different host species.
Zoonotic C. ubiquitum was detected in two European sea bass (Dicentrarchus labrax). One isolate
similar to C. scophthalmi was detected in a cultivated meagre (Argyrosomus regius), and one isolate,
highly divergent from all the Cryptosporidium species/genotypes described, was identified from a
synanthropic round sardinella (Sardinella aurita). This study contributes to increasing the molecular
data on fish cryptosporidiosis, expanding the range of known hosts for C. molnari and identifying, for
the first time, zoonotic C. ubiquitum in edible marine fishes, pointing out a potential health risk.
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1. Introduction

Fish consumption has increased at an average annual growth rate of 3.1%, far above
the rate of annual world population growth (1.6%). This high demand for fish products
(156 million tonnes intended for human consumption in 2018) is supplied by capture fish-
eries and aquaculture production [1]. In the next decade, a notable increase in production
is expected, attributable to the fast growth of aquaculture, whose production will exceed
that of capture fisheries [2]. Concerning marine finfish, monitoring of fish stocks indicates
a continue decline of marine fishery resources, especially in the Mediterranean and Black
Sea, with 62.5% of marine stocks at unsustainable levels [1,3]. In this context, coastal and
marine aquaculture has an important role as a sustainable source of fish protein.

Cryptosporidium is an important water- and food-borne pathogen all over the world.
It is considered the fifth most important food-borne pathogen, with more than 8 million
cases of food-borne illness reported annually [4]. It is one of the main causes of diarrhea
worldwide, especially in young children [5], and may even be a life threatening pathogen
in immunocompromised people [6]. Cryptosporidiosis is not exclusive to humans, as
there are several Cryptosporidium species infecting a wide range of wild and domestic
vertebrates [7,8].

Concerning fishes, Cryptosporidium has been detected in several hosts, including culti-
vated and wild freshwater and marine species, as well as ornamental fishes. Cryptosporidium
spp. characterization in fish is based mainly on morphological description and, chiefly, on
molecular methods, which are essential to identify species, genotypes and subgenotypes [9].
Currently, the following five species are recognized as specific to fish hosts: C. molnari,
originally characterized in wild gilthead seabream (Sparus aurata) and European seabass
(Dicentrarchus labrax) [10,11]; C. scophthalmi, which has been only characterized genetically
in wild turbot (Scophthalmus maximus) [12]; C.m huwii from guppy (Poecilia reticulata), golden
tiger barb (Puntigrus tetrazona) and neon tetra (Paracheirodon innesi) [13-15]; C. bollandi from
Oscar fish (Astronotus ocellatus) [16]; and recently proposed C. abrahamseni n. sp. from
red-eye tetras (Moenkhausia sanctaefilomenae) [17]. Additionally, several genotypes specific
to fish (piscine genotypes) have been described [18].

Non-piscine host-specific species and genotypes have been detected in fishes too. The
high environmental oocyst resistance [19] allows the contamination of aquatic environments
with oocysts coming from terrestrial species (generally by fecally contaminated wastewater
or agricultural run-off), which is accumulated in marine organisms like shellfish and
fish [20]. Zoonotic C. parvum, anthroponotic C. hominis, C. xiaoi, C. scrofarum and rat
genotype III have been detected in fishes [18]. Although it has not been confirmed that
these pathogenic species are actually infecting fish hosts, and fish-borne cryptosporidiosis
outbreaks have not been reported, their presence in edible fish suggests, at any rate, a
potential risk for public health. Cryptosporidium has already been detected in fillets [21],
suggesting a potential cross-contamination risk during evisceration. Furthermore, there are
fish species that are consumed ungutted and, occasionally, raw or undercooked [22].

Comunidad Valenciana is the largest marine aquaculture producer in Spain, generating
16,353 tonnes in 2020 [23]. This activity coexists with high extractive fishing activity,
providing an interesting region in which to study fish cryptosporidiosis, both in farmed and
wild captured marine fishes. Therefore, the aim of this study is to estimate the prevalence
of fish cryptosporidiosis in this region and to identify the Cryptosporidium species present,
with special focus on zoonotic species.

2. Materials and Methods
2.1. Study Area and Fish Sampling

The study was performed in Comunidad Valenciana, a region located in Eastern
Spain, whose marine area belongs to the Levantine-Balearic Demarcation. Research was
conducted in four on-growing off-shore aquaculture farms belonging to the Agrupacién de
Defensa Sanitaria Acuicultura de la Comunidad Valenciana (ADS ACUIVAL). These farms,
located at a mean distance of 1.87 nautical miles from the coast and at an average depth of
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35.75 m, are dedicated to the fattening of European sea bass, gilthead seabream and meagre
(Argyrosomus regius) in floating pens. Cultivated fish are separated from synanthropic fish
that aggregate around floating pens only by nets of different mesh sizes, allowing the free
circulation of water. Fish sampling was conducted from July 2020 to October 2021, mainly
in the autumn and summer seasons. During the second year of the study (March to June
2021), fish from extractive fisheries, mainly trawling, were obtained from four different fish
markets in the same marine demarcation. These fish markets were distributed along the
coast of Comunidad Valenciana and were chosen to be as far away as possible from the
farms, to guarantee that these fishes constituted an independent group.

A total of 404 fishes were sampled, from the following three different groups: (1) culti-
vated fishes from the four study farms study (N = 147); (2) wild synanthropic fishes caught
in the surroundings of the floating pens from these four farms (N = 147); (3) and wild
fish from extractive fisheries obtained at the fish markets (N = 110) (Table 1). Fishes from
groups 1 and 2 were stunned and slaughtered following the standard procedures used at
Mediterranean marine farms (immersion into a slurry ice solution), that were approved by
the project financing entity.

Table 1. Marine fish collected in the present study depending on the species, group and location.

Cultivated Fish
Scientific Name Common Name Farm 1 Farm 2 Farm 3 Farm 4 Total
Argyrosomus regius Meagre - 13 11 - 24
Dicentrarchus labrax European seabass 24 26 19 15 84
Sparus aurata Gilthead seabream 9 - - 30 39
Total 33 39 30 45 147
Synanthropic fish
Scientific name Common name Farm 1 Farm 2 Farm 3 Farm 4 Total
Belone belone Garfish 3 - - - 3
Boops boops Bogue 1 - 1 4 6
Chelon labrosus Thicklip grey mullet - - 1 - 1
Dicentrarchus labrax European seabass - 1 - 9 10
Diplodus puntazzo Sharpsnout seabream - - 1 - 1
Diplodus sargus White seabream - 4 - - 4
Diplodus vulgaris Common two-banded seabream - 5 9 2 16
Mullus barbatus Red mullet - - 1 - 1
Pagellus acarne Axillary seabream - 17 8 - 25
Pagellus erythrinus Common pandora - 1 2 1 4
Sardinella aurita Round sardinella 13 - 3 9 25
Scomber japonicus Chub mackerel - 1 2 - 3
Serranus cabrilla Comber - - - 1 1
Sparus aurata Gilthead seabream - 2 - - 2
Spicara maena Blotched picarel 3 - - 8 11
Spondyliosoma cantharus Black seabream - - 1 1
Trachinotus ovatus Pompano 1 - 1 - 2
Trachurus mediterraneus Mediterranean horse mackerel 8 11 6 6 31
Total 29 42 35 41 147
Fish from extractive fisheries
Scientific name Common name Ma{ket Ma;ket Ma;'ket Maiket Total
Argentina sphyraena Argentine - - - 1 1
Argyrosomus regius Meagre - - - 1 1
Arnoglossus imperialis Imperial scaldfish - - - 1 1
Boops boops Bogue - 3 - - 3
Chelidonichthys cuculus Red gurnard - - 1 - 1
Citharus linguatula Spotted flounder - - 3 1 4
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Table 1. Cont.

Cultivated Fish
Scientific Name Common Name Farm 1 Farm 2 Farm 3 Farm 4 Total
Conger conger European conger - - - 2 2
Diplodus annularis Annular seabream - 2 - - 2
Diplodus vulgaris Common two-banded seabream - - - 1 1
Helicolenus dactylopterus Blackbelly rosefish - - 1 1
Labrus merula Brown wrasse - - - 1 1
Lepidotrigla cavillone Large-scaled gurnard - - - 1 1
Lophius budegassa Blackbellied angler - - 1 1 2
Merluccius merluccius European hake - 2 5 4 11
Micromesistius poutassou Blue whiting - - 2 3 5
Mullus barbatus Red mullet - 1 6 2 9
Mullus surmuletus Surmullet - - 1 2 3
Pagellus acarne Axillary seabream - 1 - - 1
Pagellus erythrinus Common pandora - 3 1 1 5
Peristedion cataphractum African armoured searobin - - - 1 1
Phycis blennoides Greater forkbeard - - 4 4 8
Phycis phycis Forkbeard - - 1 1
Sarpa salpa Salema - - 1 1
Scomber scombrus Atlantic mackerel 19 1 - 2 22
Scyliorhinus canicula Lesser spotted dogfish - - 3 - 3
Serranus cabrilla Comber - - - 1 1
Serranus hepatus Brown comber - - 1 1 2
Trachinus draco Greater weever - - 1 - 1
Trachurus mediterraneus Mediterranean horse mackerel - 2 - 1 3
Trisopterus luscus Pouting - 2 2 11
Uranoscopus scaber Stargazer - - - 1 1
Total 19 17 36 38 110

The symbol “-“ means that no specimens of that fish species were sampled in the corresponding farm or fish market.

Sampled fish were refrigerated and transported to the Parasitology laboratory at
CEU Cardenal Herrera University (Alfara del Patriarca, Valencia, Spain), to be processed
within the first 24 h after death. Species determination, body weight and total body length
were recorded, and dissection was performed for each individual using sterile dissection
material. Gastrointestinal tissue scrapings mixed with intestinal contents were preserved at
—20 °C until DNA extraction.

2.2. DNA Extraction and Molecular Detection of Cryptosporidium spp.

DNA extraction was performed using an NZY Tissue gDNA Isolation Kit (Nzytech
genes & enzymes, Lisbon, Portugal), according to the manufacturer’s instructions. Pre-
liminary steps for samples containing stool were also applied, in order to maximize the
efficiency of the extraction.

Samples were tested for Cryptosporidium spp. following a nested PCR protocol to
amplify a =~ 578 bp fragment of the 185 rRNA gene, as described by Ryan et al. (2003) [24].
All PCR runs included a positive control, consisting of DNA from C. ubiquitum isolated from
infected farmed lambs, and a negative control without DNA template. Positive isolates
were also amplified at the actin locus using Cryptosporidium spp. specific actin primers [25]
and primers specifically designed for piscine-derived Cryptosporidium [26]. Products of the
secondary reactions were visualized on 1.5% agarose gel stained with RedSafe TM Nucleic
Acid Staining solution (iNtRON Biotechnology, Seongnam, Republic of Korea).

2.3. Sequence and Phylogenetic Analysis

Positive samples were Sanger-sequenced by the sequencing service of the Genomics
Department at Principe Felipe Research Centre (Valencia, Spain), using an ABI Prism
3730 sequencer (Applied Biosystems, Foster City, CA, USA). The nucleotide sequences
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obtained were visualized using the Chromas version 2.6.6 (Technelsyum DNA Sequencing
Software, South Brisbane, QLD, Australia) and compared with Cryptosporidium spp. se-
quences deposited in the NCBI GenBank database, using the online BLAST tool
(http:/ /blast.ncbi.nlm.nih.gov/blast (accessed on 24 February 2022). Phylogenetic analyses
were conducted using MEGA version 11 [27]. Sequences were aligned to selected reference
sequences, pairwise distance matrixes were calculated, and phylogenetic trees for the 185
rRNA and actin genes loci were constructed by the Maximum Likelihood (ML) method
using the Tamura 3-parameter substitution model. Bootstrap tests were conducted on
1000 replicates.

Partial sequences of the 185 rRNA and actin genes from this study were deposited in
GenBank under the accession numbers OM574856-OM574862 and OM650810-OM650814.

2.4. Data Analysis

Prevalence, expressed as mean =+ standard error (SE), was calculated for each group.
Fisher’s exact test was applied to assess differences between the groups’ prevalence. The
significance level was set at a p value < 0.05. Mean weights and mean total body lengths
=+ standard deviation (STD) were calculated. Analyses were performed on R software [28].

3. Results
3.1. Prevalence

Cryptosporidium spp. were detected in 17 out of 404 samples (4.2 £+ 1%). Preva-
lence in the cultivated group was 4.8 + 1.8% (7/147), while prevalence in wild fish was
3.9 £ 1.2% (10/257). Among wild fish, prevalence was higher in the group of synanthropic
fishes (6.1 £ 2%; 9/147), with only one fish infected from extractive fisheries (0.9 &= 0.9%;
1/110). The difference in prevalence between these two groups was statistically significant
(p = 0.047). Positive isolates were found in synanthropic fish from the four marine farms
studied and in cultivated fish from three of these farms (Figure 1).

on —
Fish group

o B Synanthropic
ER
S

[} —

1 2 3 4
Farm

Figure 1. Number of positive fishes according to group and location (only applied to Farms).

Cryptosporidium spp. were detected in all of the three cultivated species analyzed, in
four European seabass, two gilthead seabream and one meagre. Regarding synanthropic
fishes from farm surroundings, Cryptosporidium spp. were detected in the following five
species: four round sardinellas (Sardinella aurita), two wild European seabass, one Mediter-
ranean horse mackerel (Trachurus mediterraneus), one blotched picarel (Spicara maena) and
one pompano (Trachinotus ovatus). Lastly, the only positive fish from the extractive fisheries
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group was a bogue (Boops boops). Mean total body length for each species in which positive
individuals had been detected indicates that the wild individuals analyzed were adults,
the vast majority of them having reached sexual maturity. In the case of farmed species,
although they were not sexually mature individuals in all cases, they could be considered
young adults, with a minimum on-growing period in sea pens of approximately 20 months
(Table 2). Prevalence for each host species is also recorded in Table 2.

Table 2. Prevalence of Cryptosporidium spp. and C. molnari for each species in which positive
individuals were detected. Study group, mean weight, total body length and reference total body
length at sexual maturity are indicated.

Mean Total Mean Total Body

. Mean Weight Cryptosporidium C. molnari
Host Species N Body Length length at Sexual o o Group
+ STD (g) + STD (cm) Maturity (cm) 2 Prevalence (%) Prevalence (%)
Dicentrarchus labrax 84 38451 +18686  31.15+552 261 476 (4/84) 3.57 (3/84) C
(European seabass) 10 318.74 - 85.83  33.36 + 1.94 20 (2/10) 10 (1/10) S
Sparus aurata 39 279.25+7558 2445+ 2.13 265 5.12 (2/39) 512 (2/39) C
(Gilthead seabream) 2 509.57 + 312.47 31.6 + 7.64 0 0 S
Argyrosonuis 24 47468 £269.92  41.98 +11.99 61.6 [29] 417 (1/24) 0 C
regius (Meagre)
Sardinella aurita
(Round sardinella) 25 96.84 £ 32.45 22.28 +2.47 18.8 16 (4/25) 12 (3/25) S
105.26 £+ 40.79 21.5 £+ 3.89 0 0 S
Boops boops (Bogue) 14.3
76.56 £ 24.31 19.77 £ 2.42 33.34 (1/3) 33.34 (1/3) EF
Spicara maena (Blotched 11 77.05 + 38.67 18.85 + 3.77 11.5 9.09 (1/11) 9.09 (1/11) S
picarel)
Trachinotus
ovats (Pompano) 2 139.64 +£53.97  24.95 + 148 30 [30] 50 (1/2) 50 (1/2) S
Trachurus mediterraneus 31 164.28 + 63.57 26.47 + 3.82 20 3.23 (1/31) 3.23(1/31) S
(Mediterranean 3 65.65 + 21.67 195 +2.18 0 0 EF

horse mackerel)

@ Data extracted from: https://www.fishbase.se/search.php (accessed on 13 April 2022). C: cultivated fish; EF: fish
from extractive fisheries; N: total number of specimens analysed for each host species and group; S: synanthropic
fish; STD: standard deviation.

3.2. Molecular Identification at the 18S rRNA Gene

Sequence and phylogenetic analysis at the 185 rRNA gene identified two species of
Cryptosporidium, C. molnari (76.5%; 13/17) and C. ubiquitum (11.8%; 2/17), one isolate similar
to C. scophthalmi (5.9%; 1/17) and one unidentified Cryptosporidium (5.9%; 1/17).

C. molnari was identified in the three groups studied and in seven different host species
(Table 2). Nine out of 13 positive individuals identified as C. molnari (samples CS1-9) were
100% identical and exhibited a genetic similarity of 99.80% with the sequence deposited
in the GenBank under the accession number HM243550. This sequence diverged from
isolates CS1-9 in a unique single nucleotide variant (SNV). Samples CS10-12 exhibited a
genetic similarity between 99.50-99.61% with the same reference sequence and presented
the same SNV together with others. Finally, one C. molnari isolated from an extractive
fisheries specimen (sample FM1) was genetically closer to the sequence deposited in the
GenBank under the accession number HQ585890 (Table 3, Figure 2).

Two sequences were identified as zoonotic C. ubiquitum, both in European seabass.
One of them (sample CS14) presented 100% genetic similarity with the sequence deposited
in GenBank under accession number MT044147. The other sample (CS13) exhibited 100%
genetic similarity with a sequence from Cryptosporidium cervine genotype (GU124629), the
old name for C. ubiquitum (Table 3, Figure 2). Attempts at amplifying these samples at the
60-kDa glycoprotein gene (GP60; [31]) failed and isolates could not be sub-typed.
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Table 3. Cryptosporidium spp. identified in marine fish at the 185 rRNA and actin genes.

Sample Host Species Group 1\5:?1:‘:‘ 159 TRNA Actin
Identification Most Similar Sequence % Identity/SNVs Identification Most Similar Sequence % Identity/SNVs

CS1 Dicentrarchus labrax C 4 C. molnari HM243550 99.80/1 — — —
Ccs2 Dicentrarchus labrax C 4 C. molnari HM243550 99.80/1 — — —
Cs3 Dicentrarchus labrax C 4 C. molnari HM243550 99.80/1 — — —
CS4 Sparus aurata C 4 C. molnari HM?243550 99.80/1 C. molnari HM365220 99.25/2
Cs5 Spicara maena S 4 C. molnari HM243550 99.80/1 — — —
Cs6 Sardinella aurita S 4 C. molnari HM243550 99.80/1 — — —
cs7 Dicentrarchus labrax S 4 C. molnari HM243550 99.80/1 — — —
Cs8 Trachurus mediterraneus S 1 C. molnari HM243550 99.80/1 C. molnari HM365220 98.83/3
CSs9 Sardinella aurita S 3 C. molnari HM243550 99.80/1 C. scophthalmi-like KR340589 95.77/332
CS10 Sparus aurata C 1 C. molnari HM243550 99.50/3 — — —
Cs11 Sardinella aurita S 3 C. molnari HM243550 99.60/2 — — —
Cs12 Trachinotus ovatus S 3 C. molnari HM243550 99.61/2 C. molnari HM365220 98.20/11
FM1 Boops boops EF 2 C. molnari HQ585890 99.80/1 — — —
Cs13 Dicentrarchus labrax S 2 C. ubiquitum GU124629 100 — — —
Cs14 Dicentrarchus labrax C 2 C. ubiquitum MT044147 100 — — —
CS15 Argyrosomus regius C 2 C. scophthalmi-like KR340588 97.21/14 C. scophthalmi-like KR340589 96.11/21b
cs16 Sardinella aurita s 4 Unidentified MT169961 88.16/56 — — —

Cryptosporidium

2 Query cover: 95%. b Query cover: 92%. C: cultivated fish; EF: fish from extractive fisheries; S: synanthropic fish;
SNV: single nucleotide variant. Symbol “—” means that actin gene couldn’t be amplified for that sample.

A Samples CS1-9 (OM574858)
A sample CS10 (OM574859)
A Samle CS11 (OM574851)
%
Cryptosporidium moinari clone D2B (HM243550)
A\ Semple CS12 (OM574860)

53 Cryptosporidium molnariisolate MC10.1 (HQ585890)

86 A sample FM1 (OM574862)

Cryptofish 7 (MK236544)

Cryptofish 1 (MK236538)
82
53 Cryptofish 4 (MK236541)

Cryptofish 5 (MK236542)
Cryptofish 2 (MK236539)

75 L Cryptofish 3 (MK236540)

cr (MWO75511)
—ggi— Cryptosporidium huwi (AY524773)
A sSample CS16 (OM574856)
Piscine genotype 8 (KC807985)
60
Piscine genotype 3 (KR610348)
82
Piscine genotype 5 (KR610344)
Piscine genotype 4 (KR610346)
68 [ Cryptosporidium bollandi (MT169961)
100 '— Cryptosporidium scophthalmi (KR340588)
| I A\ Sample CS15 (OM574857)
% A Sample CS14
9 . - .
isolate (MT044147)

A Sample CS13
99

Cryptosporidiumsp. cervine genotype (GU124629)

L

0.050

Figure 2. Phylogenetic relationships between Cryptosporidium isolates from this study (A) and other
Cryptosporidium species and genotypes inferred by Maximum-Likelihood (ML) method of 185 rRNA
gene sequences (277 bp). Percentage support (>50%) from 1000 replicates (bootstrap test) is indicated
at the left of the supported node. Scale bar refers to a phylogenetic distance of 0.05 nucleotide
substitutions per site.
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One sequence from a cultivated meagre (sample CS515) showed 97.21% genetic similar-
ity with C. scophthalmi reference sequence (KR340588). Phylogenetic analysis revealed a
genetic distance of 4.8% (Table 3, Figure 2).

Finally, sample CS16 from one round sardinella was closer to C. bollandi, although it
only presented 88.16% genetic similarity with this species reference sequence (MT169961).
Genetic distance between sample CS16 and C. bollandi was 25.3% and phylogenetic analysis
inferred a new clade for this sample, highly divergent from all the species and genotypes
previously reported (Table 3, Figure 2).

3.3. Molecular Identification at the Actin Gene

From 17 positive isolates, five were successfully amplified and sequenced at the actin
gene locus. For the following four samples, there was concordance with the 185 rRNA gene
identification: samples CS4, CS8 and CS12 corresponded to C. molnari, while sample CS15
presented a nucleotide sequence more closely related to C. scophthalmi (genetic distance of
3.8%), as occurred at the 185 rRNA gene locus, although in this case the isolate clustered
separately (Figure 3). Isolate CS9, which was typed as C. molnari at the 185 rRNA gene, was
more closely related to C. scophthalmi at the actin gene (genetic distance of 2.7%), suggesting
a probable mixed infection in this specimen (Table 3, Figure 3).

72 r Cryptofish 5 (MT570034)
Cryptofish 4(MT570032)
Cryptofish 2 (MT570031)

Cryptofish 1 (MT570028)

Cryptofish 7 (MT570035)

Piscine genotype 4 (KR610336)
— 52

493|_— Cryptosporidium bollandi (MT160193)
Cryptosporidium huwi (AY524772)

—90|— Cryptosporidium abrahamseni (MW080520)

Piscine genotype 3 (KR610343)

75

Piscine genotype 5 (KR610339)

Piscine genotype 8 (KC807987)

A Sample CS12 (OM650812)
Cryptosporidium moinariisolate 1 (HM365219)
Cryptosporidium moinari isolate 2 (HM365220)
A Sample CS8 (OM650810)
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Figure 3. Phylogenetic relationships between Cryptosporidium isolates from this study (A) and
other Cryptosporidium species and genotypes from fish host inferred by Maximum-Likelihood (ML)
method of actin gene sequences (192 bp). Percentage support (>50%) from 1000 replicates (bootstrap
test) is indicated at the left of the supported node. Scale bar refers to a phylogenetic distance of
0.05 nucleotide substitutions per site.
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4. Discussion

The Cryptosporidium prevalence measured in adult wild fishes (3.9 £ 1.2%) can be
considered low, with comparable results to those reported previously in Papua New
Guinea (1.45% [26]), Australia (2.4% [32]) and in different European seas (2.3-3.2% [33]).
The study of wild fish allowed us to check not only commercial fishes from markets but
also synanthropic fishes living in the vicinity of aquaculture farms. The inclusion of the
synanthropic group could explain the slightly higher prevalence in the present study, due
to higher population densities in the surroundings of aquaculture facilities, attracted by the
abundance of food [34,35]. This fact could also explain the difference in prevalence detected
between the synanthropic and extractive fishery groups (6.1% and 0.9%, respectively).

The Cryptosporidium spp. prevalence in the cultivated group was 4.8 £ 1.8%, corre-
sponding to C. molnari infections in young adults of gilthead seabream and European sea
bass, and a C. scophthalmi-like isolate from a meagre. The prevalence obtained in gilthead
sea bream (5.12%) is comparable to the previously detected prevalence in individuals
of similar weights in offshore on-growing systems [36], and lower than the prevalence
detected in younger fish, which are considered highly susceptible, as is generally observed
in human and animal cryptosporidiosis [5,37]. Prevalence in European sea bass has been
studied mainly among fingerlings and juveniles, with variable prevalence according to fish
age and weight [10,36]. Available data in older individuals reported 0% prevalence [33,36].
In the present study, only young adults from offshore on-growing farms have been sampled
and analyzed, showing a 3.57% prevalence.

The low prevalence in this survey could have been explained by the age of the fishes.
A higher prevalence could be expected in younger individuals. However, fishes close
to commercial size are more relevant for public health. Future studies should consider
the possibility of sampling throughout the year, to determine whether seasonality may
influence prevalence. Most positive fishes in this study corresponded to C. molnari isolates
(76.5%), contrasting with previous surveys in marine fish, where different piscine genotypes
and zoonotic C. parvum were more frequent [26,32,33]. This fact could be explained by the
fact that sampling comprised cultivated gilthead sea bream and European sea bass (type
hosts for C. molnari), which were environmentally related to the synanthropic populations,
facilitating the transmission of this parasite, as occurs in other parasitic infections (e.g., sea
louse in Atlantic Salmon, [38,39]). Therefore, C. molnari was detected in both cultivated
species, but also in wild synanthropic round sardinella, blotched picarel, pompano and
Mediterranean horse mackerel, expanding the range of known hosts for C. molnari. Nine out
of thirteen C. molnari isolates were homologues at 185 rRNA partial sequences obtained and
differed in one SNV from other C. molnari available sequences. From those, seven samples
corresponded to cultivated and synanthropic individuals from the same location (Farm 4,
see Table 3); another two corresponded to wild synanthropic individuals captured in other
locations (Farms 1 and 3), one Mediterranean horse mackerel and one round sardinella,
both pelagic migratory species, commonly associated with marine farms [34]. It is well
known that coastal aquaculture facilities attract wild fish populations that forage on waste
fish feed [35]. Movement of these farm-aggregating populations acts upon connecting farms
and other marine areas [35,40,41]. This behavior could potentially enable the transmission
of pathogens between farms and to wild populations through farm-aggregating wild
fish movements [35]. Molecular data at the 18S rRNA gene from this study highlights
the possibility of the spreading of Cryptosporidium spp. between different locations by
migratory species that inhabit the surroundings of aquaculture facilities. Sequences at the
actin gene for C. molnari isolates were in concordance with 185 rRNA data, except for a
synanthropic round sardinella, which seemed to present a mixed infection with C. molnari
(185 rRNA gene) and other isolates more similar to C. scophthalmi (actin gene).

No previous data exist for Cryptosporidium prevalence or species in meagre. In this
study, only one individual out of 25 was found to be infected by one Cryptosporidium
similar to C. scophthalmi. C. scophthalmi was originally described in cultured turbot [42] by
microscopic examination and histological techniques. To date, the unique molecular data



Animals 2022, 12, 1052

10 0f 13

for this species has been reported by Costa and Saraiva (2015) [12] in the same host. Isolate
from meagre in this study exhibited a genetic distance of 4.8% (185 rRNA gene) and 3.8%
(actin gene) with the turbot’s sequences. It would be necessary to conduct a targeted study
on meagres to better characterize this C. scophthalmi-like isolate.

C. ubiquitum was detected in two European sea bass. One specimen belonged to the
cultivated group while the other was part of the synanthropic group, both coming from
the same location (Farm 2). It is important to highlight that the escape of fish from marine
aquaculture farms has been reported around the world and in different cultivated species,
including the European sea bass [43,44]. Therefore, we cannot exclude the possibility that
synanthropic individuals of European sea bass in this study were cultured individuals
that had escaped from farms. To our knowledge, this is the first time that C. ubiquitum
has been detected in a fish host. C. ubiquitum, formerly known as Cryptosporidium cervine
genotype, is a widespread zoonotic emergent species, able to affect a wide range of hosts,
greater than that of other Cryptosporidium species (domestic and wild ruminants, rodents,
carnivores and primates [45]). In Spain, C. ubiquitum reports are scarce, both in animals and
humans. It has been reported in lambs and in an adult sheep [46,47], in a red fox [48] and
in a 6-year-old child [49]. Moreover, its presence in water sources has also been reported. In
Spain, C. ubiquitum has been detected from an influent of a wastewater treatment plant [50].
The presence of C. ubiquitum in water sources potentially explains its presence in fish
hosts, as seems to occur with C. parvum [33]. Zoonotic Cryptosporidium spp. can reach the
marine environment from runoff or sewage water, as they resist the disinfectants commonly
used in the water industry [50]. In this study, the sequences at the 185 rRNA gene of
the two positive isolates were 100% identical to two sequences from domestic cattle from
other countries. However, attempts to sub-type these isolates failed, making it difficult
to identify a potential origin. The findings of the present survey imply a new concern for
public health, of special importance in Spain, the third highest fish consuming country
within the European Union [23]. Histopathological analysis would have been necessary to
determine whether this was a possible natural infection or, on the contrary, the fish were
only acting as mechanical transporters [21]. However, the mere presence of C. ubiquitum in
fish gastrointestinal tracts may pose a risk of transmission to humans. Although European
sea bass is not commonly consumed undercooked, it still remains a risk while handling [51].
Moreover, other fish species, which are commonly consumed whole, raw or undercooked,
could potentially harbor this zoonotic species.

Finally, sample C16 from a wild synanthropic round sardinella was identified as a
Cryptosporidium sp. highly divergent from known species/genotypes. As inferred by the ML
method at the 185 rRNA gene (Figure 2), it seems to constitute a new clade. Unfortunately,
attempts to amplify the actin locus failed for this isolate. Although molecular data at the
185 rRNA gene could be indicative of a new Cryptosporidium species, it would be necessary
to detect more isolates and to perform more molecular and morphological studies.

5. Conclusions

This study provides new data on the molecular characterization of Cryptosporidium
spp- in marine fish, identifying new host species for C. molnari and evidencing the high
diversity of this parasite in fish. Two potential new genotypes/species have been detected,
although further studies are necessary to characterize them. Finally, the detection of
zoonotic C. ubiguitum in fish could represent a new source of food-borne cryptosporidiosis,
highlighting the importance of these studies in risk assessment for fish consumption.
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