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Abstract: Honeybee populations have locally and temporally declined in the last few years because
of both biotic and abiotic factors. Among the latter, one of the most important reasons is infection by
the microsporidia Nosema ceranae, which is the etiological agent of type C nosemosis. This species
was first described in Asian honeybees (Apis cerana). Nowadays, domestic honeybees (Apis mellifera)
worldwide are also becoming infected due to globalization. Type C nosemosis can be asymptomatic
or can cause important damage to bees, such as changes in temporal polyethism, energy and oxidative
stress, immunity loss, and decreased average life expectancy. It causes drastic reductions in workers,
numbers of broods, and honey production, finally leading to colony loss. Common treatment is
based on fumagillin, an antibiotic with side effects and relatively poor efficiency, which is banned
in the European Union. Natural products, probiotics, food supplements, nutraceuticals, and other
veterinary drugs are currently under study and might represent alternative treatments. Prophylaxis
and management of affected colonies are essential to control the disease. While N. ceranae is one
potential cause of bee losses in a colony, other factors must also be considered, especially synergies
between microsporidia and the use of insecticides.
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1. Introduction

Global agricultural production requires entomophile pollination. In 2005, pollina-
tion by bees represented 9.5% of the world agricultural production destined for human
consumption. The value fluctuated among different countries, between 1.8% (Turkey)
and 53% (Ireland) [1,2]. In fact, a recent review by Wagner indicates that declines of in-
sect populations, including honeybees (Apis mellifera), have occurred mainly in Europe
due to biotic and abiotic factors, such as agricultural intensification, climate change, and
invasive species [3]. These local and temporal declines are product of socioeconomic
transformations [4]. The COLOSS Honeybee Research Association collects data from more
than 30 countries, most of them in the Northern Hemisphere, to monitor the loss of bees
around the world on an annual basis [5]. The last results obtained by COLOSS indicated
an overall loss rate of 20.9% in the winter of 2016/2017, including data of 425,762 colonies
in 30 countries around the world [6] with standard protocols [7]. Possible causes for the
colony losses include abiotic and biotic factors [8]. Abiotic factors, such as climate change,
forage shortages, or uncontrolled use of chemicals, insecticides, and herbicides have been
shown to have a strong influence [9–14]. The biotic factors include different species of
acarids (Varroa destructor and Acarapis woodi), insects (Aethina tumida), viruses of the fam-
ily Dicistroviridae, and bacteria (Paenibacillus larvae and Melissococcus plutonius) [15–18].
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Combined effects derived from abiotic and biotic factors may increase bee population
losses [19–22].

The second most prevalent biological agents related to the decrease in worker bees
are the parasitic microsporidia Nosema spp., mainly Nosema apis and N. ceranae, both re-
sponsible for nosemosis in Apis spp. [21]. N. ceranae was first described in the Asian
honeybee (Apis cerana), and it replaced N. apis, although not generally, in European hon-
eybees (A. mellifera) around 3 decades ago [23–30]. According to a study by Gisder et al.
(2017), N. apis and N. ceranae show different multiplication rates in cell culture, but this is
possibly not relevant in vivo [24]. Even though N. apis and N. ceranae show similar viru-
lence, multiplication, and mortality rates [31], N. ceranae is more prevalent and suppresses
the bee immune response, which has been related to colony collapse [32–34]. N. ceranae
infections seem to show seasonality, with higher infection levels in spring, and depend on
geography and other factors, such as the presence of viruses [31,35–37]. The main aim of
this review is to deepen our understanding of the role of N. ceranae in the decrease of bee
populations and to present new detection and diagnosis methods and current nonchemical
treatments against infection.

2. Etiology of Nosema spp. Infection

Nosema spp. is an intestinal microsporidian fungus spore-former (in its infecting form)
and an obligate intracellular parasite of eukaryotes [38]. Microsporidia have a simplified
mitochondrial form, a mitosome, which does not allow the production of ATP, implying
a strong energy dependence on the host, the key to its pathogenicity [39]. Nosemosis is
a parasitic disease caused by two species of Nosema. Type A nosemosis is caused by N.
apis and type C is mainly caused by N. ceranae [12,40], causing dysentery [41]. N. apis and
N. ceranae present a similar internal structure, but differ in the size of the spores, with
the spores of N. apis being bigger than those of N. ceranae (6 × 3 µm vs. 4 × 2.2 µm) [33].
Traditionally, differentiation of N. ceranae and N. apis has been carried out by transmission
electron microscopy (TEM) observation as the polar tube coils can be counted by using
TEM [42], since the spores of N. ceranae have 20 to 23 spirals of polar filaments, less than
N. apis which usually contains 30 to 44 spirals of polar filaments [27,43]. Differentiation
and etiologic diagnosis under TEM require qualified staff and is labor intensive; therefore,
molecular detection by PCR is needed [35]. Mixed infections can occur in East Asia and
America, although they have also been reported in other geographic areas [44,45]. Type A
nosemosis is opportunistic and affects already-weakened colonies. This disease is favored
by prolonged inclement weather, hibernation, and certain commercial practices, which lead
to confinement of the hive [46].

Type C nosemosis can be asymptomatic or can cause important damage to bees [41,47,48],
showing a seasonal pattern directly related to increased temperature [24,35,49]. Nosema ceranae
infects mainly worker bees [47,48], inducing early maturation of nurses, which causes an
imbalance in the hive [48,49]. Higes et al. (2008) found a correlation between this species
and honeybee colony collapse. According to these authors, hives infected by N. ceranae
undergo what is known as an incubation phase, when the queen can produce enough
offspring to compensate the loss of workers. During this long phase, clinical signs are not
present, but when more than 80% of the bees are infected with more than 10 million spores,
collapse occurs. At this moment, the queen cannot produce enough eggs and the number
of nurses and forager bees is reduced. However, some studies have not reported evidence
of clinical signs usually observed in infections of N. apis, such as dysentery, crawling bees,
or supersedure of the queen [47,50].

Nosema ceranae was first discovered by Fries et al. (1996) in Asian honeybees (A. cerana),
but today this species is present worldwide [27]. Since restrictions on the importation of
bees and bee products in Western Australia kept the region free of nosemosis, a relationship
between the parasite and commercial exchanges may be suggested [28,46]. N. apis has
been replaced by N. ceranae in tropical areas, but the coexistence of both species has also
been reported in cold areas, even though the viability of spores decreases by around
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30% at low temperatures [31,51–54]. Besides A. cerana, N. ceranae can infect other species,
such as A. mellifera, A. dorsata, and A. florea and bumblebee Bombus bellicosus [55–57].
These three bee species can become parasitized, and horizontal fecal–oral transmission is
common [30,50,58]. Although much less important to disease spread, vertical transmission
is also possible, since spores have been found in the ovaries of queens [35,59]. Young
worker bees are usually infected by N. ceranae with fecal spots containing infective spores,
and trophallaxis and food exchange between bees also cause transmission [60]. Moreover,
parasites can be spread among different colonies. Substances such as honey, wax, royal
jelly, and pollen have been found to act as fomites [42,51].

Type C nosemosis has a complex pathogenesis. This microsporidium alters the phys-
iology and behavior of individual bees, as well as the whole hive. Depending on their
age, bees develop different functions, e.g., young bees clean, build, and nurse inside the
hive, whereas exterior tasks are reserved for older bees. Hormones (vitellogenin (Vg)
and juvenile hormone III (JH)) are physiological regulators underlying behavioral devel-
opment in bees. N. ceranae infection provokes a hormone imbalance, accelerating this
development [60,61]. Infected queens show increased Vg titers [58], workers show higher
concentrations of JH [62], and high Vg levels in younger bees are associated with N. ceranae
infection, which can delay polyethism and disrupt colony balance [61]. Pheromones are
also relevant in the stage transitions, including brood pheromone (BP), ethyl oleate (EO),
(E)-β-ocimene (EBO), and queen mandibular pheromone (QMP). BP and EO are produced
by young bees, whereas EBO is produced by older bees, and QMP by queen bees [63–65].
In infected young bees, EO levels are similar to those of noninfected older bees. This means
early maturation and alteration of QMP levels, which changes the worker bees’ behavior
toward the queen [58,66].

About effects on the metabolism, N. ceranae has been found to reduce food sharing
between bees, suggesting an increased hunger level, which may influence the infection
transmission rates [67]. Mayack and Naug (2009) confirmed that infection induces energetic
stress, manifested by increased appetite [68]. In addition, alterations in amino acids, lipids,
and carbohydrate reserves have been shown. This impairs the ability to fly [39,69] due
to energetic stress or disorientation [70]. Furthermore, infected bees present atrophy of
hypopharyngeal glands, which secrete major royal jelly proteins and glucosidase III [71].
Nosemosis also affects life expectancy, which decreases in infected bees [60]. N. ceranae can
also affect hive behavior, with lower honey and offspring production and lower numbers
of worker bees in infected hives [49,52,63].

The use of insecticides is a very important anthropic factor causing synergies with
N. ceranae infection. The first evidence of potential synergy between insecticides and
N. ceranae infection was verified by Alaux et al. (2010), who showed a higher mortality rate
of infected bees exposed to imidacloprid [10]. A year later, similar results were found with
other insecticides, such as fipronil and thiacloprid, at sublethal doses [72]. Other studies
indicated that this phenomenon was independent of the intake and number of N. ceranae
spores, and it occurs in natural environments [73]. The synergistic effect of nosemosis with
fipronil can increase mortality from 23–39% with N. ceranae and fipronil, separately, to
84% with the two combined [74]. Under laboratory conditions, the presence of xenobiotics
alters gene expression related to immunity and decreases the survival of bees infected by
N. ceranae [67]. Moreover, synergy between infection and insecticide exposure affects the
bees’ microbiota, which harms their general health [75]. Nowadays, it is possible to evaluate
the effects of sublethal exposure to insecticides in N. ceranae infection around the world by
simulation [76]. Besides insecticides, consumption of pollen with higher fungicide loads
has been demonstrated to increase bees’ susceptibility to Nosema infection [77]. However,
synergies are evident not only with exposure to chemical stressors. Recently, Arismendi et al.
(2020) studied infections of Lotmaria passim, a predominant trypanosomiasis in honeybees,
mixed with N. ceranae. Their results showed lower survival rates as a consequence of this
coinfection, due to a decrease in immune-related gene expression [78].
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3. Host Resistance of N. ceranae

To protect themselves against pathogens, insects form a chitinous exoskeleton and
a cuticle in the intestinal tract. This cuticle is not present in the middle intestine, in
which only a semipermeable peritrophic membrane is present that allows the passage of
pathogens [79,80]. In addition, bees produce reactive oxygen species (ROS) with antimi-
crobial properties [81]. This defense mechanism is inefficient against N. ceranae infection,
as this microsporidium provokes an overexpression of genes related to oxidation, which
causes oxidative stress and damage in intestinal cells by the production of enzymes such as
catalase, peroxidase glutathione, and S-transferase glutathione [66]. A low level of Vg re-
lated to infection by the pathogen improves oxidative stress, but N. ceranae can inhibit it [81].
Some enzymes, such as prophenol-phenoloxidase (PO), dehydrogenase glucose (DG), and
lysozyme (LYS), are related to cellular immunity in bees [77,82]. Meanwhile, humoral
immunity involves the production of antimicrobial peptides (AMPs) such as apidaecin,
abaecin, hymenoptaecin, and defensin, which act in the membrane of the pathogen [32].
Some studies have shown that N. ceranae infection causes underexpression of genes related
to the synthesis of AMPs and the enzymes cited, inducing immunosuppression of the host,
whereas the melanization process does not seem to be modified [32,69,83,84].

Besides individual immunity, bees present a social defense mechanism, called social
immunity [85], that is also related to Nosema infection. This phenomenon consists of dif-
ferent events, such as corpse transportation, altruistic self-removal of sick individuals,
grooming or behavioral fever (increasing the body temperature around a pathogen), propo-
lis production, and secretion of antimicrobial molecules, such as glucose oxidase, in food
by nurses for young bees [86]. McDonnell et al. (2013) confirmed that noninfected bees do
not show aggressive behavior toward sick individuals [87]. Moreover, allogrooming has
been described as an important defense mechanism against Varroa or Acarapis mites. Since
grooming involves licking and chewing, it has been suggested that this is a viral strategy to
increase transmission [84] and may also favor the spread of N. ceranae. On the other hand,
bees infected with Nosema are known to forage precociously and often die before returning
to the nest, which may be an adaptation to lower the rate of disease transmission. The
ability to resist infection also depends on exogenous factors, such as the main resources
available and the amount of nutrients, which are essential to compensate the energetic
stress due to the disease and to boost the immune system [68].

4. Detection and Outcome of N. ceranae Infection

Detection of type C nosemosis can be carried out both in individuals and in the hive.
In the hive, older bees show higher mortality rates, and problems to go back in the nest
(orientation problems). This causes younger bees to reach maturity, which decreases the
general life expectancy and population [51,87]. The condition of young bees is altered,
with a lower number of hemolymph cells. In addition, the storage of resources is reduced
(mainly for honey production) and the early replacement of the queen can be observed [88].
However, these signs are not specific to nosemosis type C; thus, a differential diagnosis
becomes necessary. Furthermore, it is important to consider the absence of clinical signs at
a low level of infection. Differentiation between infection by N. apis or N. ceranae can be
achieved by microscopic identification of spores, although molecular identification is the
method of choice [89]. In fact, the World Organization for Animal Health (OIE) recommends
the use of multiplex PCR for microsporidia identification [31,48,90]. In the last years, several
research groups have been working on improving different molecular techniques. Lannutti
et al. (2020) developed loop-mediated isothermal amplification (LAMP) for detection of
N. ceranae [91]. The same year, Ribani et al. confirmed that environmental DNA analysis in
honey could be a useful tool for detecting N. ceranae [91]. Alternatively, different genetic
variants of N. ceranae trigger different immune responses in the host [92], making diagnosis
even more difficult. These detection-related handicaps could be overcome using molecular
methods [93,94].
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The outcome depends on the moment of detection and the infection level of each
hive, with forager bees being the most reliable samples for N. ceranae detection, and they
should be collected at the hive entrance [95]. On the other hand, an increased number of
bees for analysis is important to collect the highest possible number of forager bees [96,97].
Late detection and/or high infection levels can lead to severe mortality rates and worse
prognosis [88]. In its acute form, the disease provokes the trembling of honeybee workers
and dead bees around the hive. The bees show a dilated abdomen and brown fecal marks
on the comb and the front of the hive. Infected colonies have decreased brood production
and slowed colony growth [98,99]. At the individual level, the hypopharyngeal glands
of infected nurse bees lose the ability to produce royal jelly, the production of mature
larvae decreases, young infected nurse bees cease brood rearing and turn to guarding and
foraging duties, infected queens cease egg-laying, life expectancy is reduced, and the disease
contributes to increased dysentery [100]. Longevity data are sparse, but some investigators
reported 100% mortality between 10 and 14 days after spore exposure [101,102], while
others reported lower mortality rates [31,64,103,104]. For these reasons, it is necessary to
increase the data on mortality rates in Nosema infections to mitigate the impact of infection
on colony viability. For this, experiments could use marked bees with and without infection
and introduce them to colonies, and then analyze the rate of disappearance of infected
honeybees for a better approximation [105].

5. Current Insights on Treatment

Fumagillin is one of the most common treatments, which is administered as a pro-
phylactic or control treatment [106]. Both N. apis and N. ceranae are sensitive to fumagillin,
an antimicrobial substance produced by Aspergillus fumigatus, which temporarily reduces
the parasitic burden and the risk of collapse [47,104]. However, the size of treated and
nontreated colonies was shown to be similar 2 months after treatment, so the probability of
surviving the winter does not differ between them [107,108]. On the other hand, fumagillin
seems to alter structural and metabolic proteins in honeybees that are necessary for normal
cell function. Nosema ceranae are apparently released from the suppressive effects of fumag-
illin at concentrations that impact honeybee physiology [103]. Thus, sanitation of the hive
is not possible if spores remain in the honey, wax, or pollen [88,104]. In addition, after more
than 50 years of commercial use, residues can be detected in hive products [109], and there
are concerns that Nosema spp. are becoming resistant to it [106]. Finally, whereas in the
USA, fumagillin is the only antibiotic approved for the control of nosemosis in honeybees,
its use is banned in Europe due to the presence of its residues in honey [48,110,111].

All the reasons have promoted the search for alternative treatments against nosemosis,
and different substances have been proved to diminish or eradicate N. ceranae infection
(Table 1). Recently, Borges et al. (2020) analyzed 10 nutraceuticals (plant extracts and
metabolites obtained from plants and spices, such as oregano oil, thymol, carvacrol, narin-
genin, trans-cinnamaldehyde, tetrahydrocurcumin, sulforaphane, embelin, allyl sulfide,
and hydroxytyrosol), and concluded that high concentrations of sulforaphane reduced the
number of N. ceranae spores in 100% of the bees, but also killed all of them, making it a
poor option as an alternative treatment due to its side effects [112].

Baffoni et al. (2016) showed that Bifidobacterium and Lactobacillus (bacteria) supplemen-
tation reduced the number of microsporidia in A. mellifera [113]. Similar results were found
with supplementation with Parasaccharibacter apium, a bacterium present in the food stores
and hypopharyngeal glands of worker bees and queens, which improved resistance to
Nosema [114]. Commercial probiotics seem to have a positive effect on reducing the number
of spores in colonies and producing positive physiological changes in individual bees [110].
In fact, an increase in gut microbes in bees inhibits N. ceranae proliferation and improves
the immune response in A. cerana [115]. On the contrary, a poor-quality diet favors the
multiplication of N. ceranae, as a consequence of an altered gut microbiota and immunity in
bees [116].
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Supplementation with proteins such as propolis and pollen was shown to prevent clin-
ical signs of infection. Pollen supplementation increases the transcription of genes related
to the expression of Vg and other important bioprocesses in infected bees [116,117], and
administration of propolis extract decreases N. ceranae spore levels in honeybees [118,119].
Suwannapong et al. (2018) observed a reduction in both mortality and infection rates
after oral administration of propolis in Apis florea [120]. They also detected elevated levels
of trehalose in hypopharyngeal glands of infected bees. In another study, propolis with
methanolic plant extracts was found to increase the survival rate and significantly decrease
the parasitic burden [121]. Other natural compounds such as chitosan and peptidoglycan
reduce N. ceranae infection and improve aspects of foraging behavior [122]. Other nonchem-
ical treatments, such as formic acid (Nosestat®), a natural extract based on beet extract and
molasses (Vitafeed Gold®), and phenyl salicylate, did not show a positive effect on control
of N. ceranae [123]. A commercial dietary supplement for veterinary use based on B group
vitamins (ApiHerb®) and a commercial drug based on oxalic acid dihydrates (Api-Bioxal®)
have been tested with positive results [124]. Treatment with oxalic acid decreased the
number of spores in an 8-day laboratory experiment, and the prevalence of infection was
reduced when it was administered to free-flying colonies twice in autumn [125]. However,
sperm parameters such as the count the motility, the acrosome integrity, the membrane
function of sperm, and the histomorphology of seminal vesicles are affected when drones
are exposed to this product [126].

Although some of these studies may look promising, more research is needed to
determine the safe use of alternatives to fumagillin treatment against nosemosis. Other
chemical compounds are also being studied; among them, protoporphyrin lysine has been
shown to prevent the development of Nosema spp. spores. In addition, this chemical
reduces disorders in the absorption of nutrients in infected bees and decreases the number
of spores and their viability by inactivating exospores [127,128]. Finally, plant extracts have
also demonstrated the ability to inhibit Nosema spp. development (Table 1) [127,128].

Table 1. Efficacy of alternative treatments against N. ceranae.

Substance Name Efficacy Reference

Plant extracts Laurus nobilis (bay laurel) Inhibition of N. ceranae development [129]

Olea europaea (olive) Inhibition of Nosema spp. development in
larvae and adult bees [130]

Oregano oil 40% reduction of N. ceranae spores [111]
Thymol 41% reduction of N. ceranae spores [111]

Nutraceuticals Sulforaphane 64% reduction of N. ceranae spores [111]
Naringenin 49% reduction of N. ceranae spores [111]
Carvacrol 57% reduction of N. ceranae spores [111]
Chitosan >60% reduction of N. ceranae spores [122]

Peptidoglycan >60% reduction of N. ceranae spores [122]

Probiotics Bifidobacterium 90% reduction of N. ceranae load and
47.7% reduction of infected bees [112]

Lactobacillus spp. 90% reduction of N. ceranae load and
47.7% reduction of infected bees [112]

Parasaccharibacter apium 56.8% reduction of N. ceranae spores [114]
Pentadecapeptide BPC 157 68% reduction of N. ceranae spores [110]

Other compounds Propolis 72% reduction of N. ceranae load in
infected bees [120]

Veterinary drugs Api-Bioxal® 50% reduction of infected bees [124]
ApiHerb® 50% reduction of infected bees [124]

Since honey can act as a reservoir for N. ceranae infective spores, even at cold tempera-
tures when stored in the colony, management by beekeepers remains one of the main factors
in controlling when infection occurs. In this sense, the spores become noninfectious when
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honeycombs are maintained at −12 ◦C (or lower) for 7 days or at 33 ◦C for 50 days [131].
Hives with a higher parasitic load should be removed, while the shook swarm method
in hives capable of surviving the infection can delay the life cycle of the parasite [88].
Prevention is also vital. In this sense, all measures aimed at reducing between-colony
transmission by beekeepers spreading spores could be important to control the disease [87],
and a queen replacement every 2 years is standard practice [132]. To summarize, it is
necessary to integrate hive-specific measures, evaluate engagement with stakeholders
linked to bee health, and recontextualize both within landscape-scale efforts, that is, to use
the “one-health” approach in order to reverse the decrease of bee numbers [133].

6. Conclusions

The role of N. ceranae in colony losses is difficult to define exactly, although it is the
second most prevalent biological agent related to the decrease in worker bees. The dif-
ferentiation and etiologic diagnosis of nosemosis is simple, but it requires qualified staff.
It requires two steps: first, confirm the presence of spores by microscopy; second, use
molecular methods to confirm the species. However, by the time the beekeeper detects
visible symptoms, the colony is practically dead. Type C nosemosis, provoked by N. ceranae
infection, has a complex pathogenesis, and it alters the physiology and behavior of individ-
ual bees and the whole hive. Both the immunosuppressive effect that these microsporidia
produce, and the disturbance of the hive organization contribute to weakening it. The
consequences are severe in several ways from an ecological, agronomic, and economic
point of view. However, the data of mortality caused by N. ceranae infection are not clear,
and it is necessary to know the real longevity data in infected colonies and understand
and act on all causes involved. In the treatment of nosemosis, fumagillin has been widely
used, although with negative effects on the metabolism of bees, so research on alternative
treatments has become urgent. The utility of products such as nutraceuticals, plant extracts,
probiotics, and veterinary drugs (Api-Bioxal® and ApiHerb®) has been proven, with dif-
ferent results. For example, one nutraceutical, naringenin, seems to reduce the number
of spores by 64%, whereas extracts of Olea europaea and Laurus nobilis inhibited the devel-
opment of microsporidia. In this sense, combining different alternative treatments could
be a good way to diminish bee losses due to type C nosemosis. However, other actions,
such as improving the management of colonies and diminishing the use of insecticides, are
necessary to increase bee populations worldwide. Finally, a “one-health” approach seems
necessary to reverse the decrease of bee populations around the world.
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127. Buczek, K.; Deryło, K.; Kutyła, M.; Rybicka-Jasińska, K.; Gryko, D.; Borsuk, G.; Rodzik, B.; Trytek, M. Impact of Protoporphyrin
Lysine Derivatives on the Ability of Nosema ceranae Spores to Infect Honeybees. Insects 2020, 11, 504. [CrossRef]
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