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Abstract: Traditionally, drug development involved the individual synthesis and biological 
evaluation of hundreds to thousands of compounds with the intention of highlighting their 
biological activity, selectivity, and bioavailability, as well as their low toxicity. On average, this 
process of new drug development involved, in addition to high economic costs, a period of several 
years before hopefully finding a drug with suitable characteristics to drive its commercialization. 
Therefore, the chemical synthesis of new compounds became the limiting step in the process of 
searching for or optimizing leads for new drug development. This need for large chemical libraries 
led to the birth of high-throughput synthesis methods and combinatorial chemistry. Virtual 
combinatorial chemistry is based on the same principle as real chemistry—many different 
compounds can be generated from a few building blocks at once. The difference lies in its speed, as 
millions of compounds can be produced in a few seconds. On the other hand, many virtual 
screening methods, such as QSAR (Quantitative Sturcture-Activity Relationship), pharmacophore 
models, and molecular docking, have been developed to study these libraries. These models allow 
for the selection of molecules to be synthesized and tested with a high probability of success. The 
virtual combinatorial chemistry–virtual screening tandem has become a fundamental tool in the 
process of searching for and developing a drug, as it allows the process to be accelerated with 
extraordinary economic savings. 
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1. Introduction 
Traditionally, drug development included the individual synthesis and biological 

evaluation of hundreds of organic compounds with the intention of characterizing their 
biological activity, selectivity, bioavailability, and toxicity. On average, this process 
involved high economic costs and several years of research before identifying a drug with 
suitable characteristics to be commercialized [1]. Thus, the identification and synthesis of 
new compounds rapidly became the limiting step in the discovery and optimization of 
lead compounds for the development of new drugs [2]. In the past, chemical libraries used 
in biological assays were obtained by gathering compounds via purification and 
identification of biologically active ingredients from natural, marine, or fermentative 
products among other sources [3]. This was a time-consuming process that led to the 
appearance of combinatorial chemistry as a method to obtain large chemical libraries in a 
time-effective manner [2]. 
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De Julian-Ortiz defined Virtual Combinatory Chemistry (VCC) as the computational 
simulation of the generation of new chemical structures by using a combinatorial strategy 
to generate a virtual library [4]. Since the generated compounds do not necessarily have 
to be new, VCC could be defined more precisely as computational simulation to generate 
structurally related compounds. Moreover, the concept of virtual combinatorial library 
should be clearly separated from databases in which compounds are not structurally 
related. In other words, a virtual combinatorial library can be generated by combining a 
limited number of chemical building blocks. The emergence of VCC, along with the 
publication of many databases with hundreds or thousands of compounds, has propelled 
the development of computational methods designed to analyze the rapidly increasing 
amounts of chemical information that is being generated [5]. Initially, these libraries or 
databases were analyzed using High-Throughput Screening (HTS), which involved the 
experimental screening of entire compound collections. However, the growing number of 
compounds available for screening promoted the development of computational 
approaches to complement HTS, such as Virtual Screening (VS) [6]. The main advantage 
of VS is that, while HTS requires experimentation to obtain results, VS consists in the 
computational evaluation of databases aiming to select a small number of reliable and 
experimentally testable candidate compounds that have a high probability of being active 
[5]. 

Different methodologies have been developed to carry out VS and they can be 
divided into two main categories: ligand-based VS (LBVS) and structure-based VS (SBVS) 
[7]. LBVS methods use the structural and biological data from a set of known active 
compounds to identify promising candidates for experimental screening [8]. These 
chemical data can be based on either 2D or 3D representations of the molecules. On the 
other hand, SBVS requires the 3D representation of the target, as this approach aims to 
find molecules that fit within a binding site in the best position and orientation possible 
[9]. 

Furthermore, besides identifying the appropriate chemical structure, other factors 
must be considered during the drug design process. For example, variations in crystal 
structure can lead to different polymorphs of a solid compound with different 
physicochemical characteristics that can translate to pharmacokinetic differences that, in 
turn, may affect their activity [10–12]. For this reason, understanding crystallization has 
become increasingly important to have a reproducible drug production process. In fact, 
Density Functional Theory (DFT) has become increasingly popular in drug design because 
it can predict this behavior in active pharmaceutical ingredients, among many other 
things [13]. 

This review discusses chemical combinatorial libraries as well as other existing 
databases available for VS and the different methodologies used for VS. This review is 
divided into three main parts. In the first part, we analyze the different strategies used to 
generate virtual combinatorial libraries as well as the methods that can be used to do so. 
In the second part, we review the methodologies used to carry out the virtual screening 
of combinatorial libraries and non-combinatorial databases. Lastly, the third part includes 
examples and applications of the aforementioned methodologies in the discovery and 
development of new drugs. 

2. Virtual Combinatorial Library Creation 
The design of virtual combinatorial libraries (VCLs) is a critical part in the early 

phases of the drug discovery process as these libraries are used in lead generation projects 
to identify series of analogues around hit and lead compounds to explore structure–
activity relationships (SARs) [14]. Starting from a single known bioactive molecule acting 
as a template, a set of theoretically isofunctional molecules can be virtually assembled 
mimicking the pharmacophore pattern [15]. In the following, we discuss the different 
approaches that can be followed to create a VCL as well as the different software platforms 
available to do so. 
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2.1. Types of Combinatorial Libraries 
There are two main classifications of VCLs regarding their generation process: based 

on a synthetic route or based on a scaffold structure.  
The synthetic route approach starts with the identification of the chemical reactions 

intended to be followed to obtain the designed compounds. This includes the reaction 
rules, the reaction strategy, allowed products, forbidden products, parameter values that 
define the logical conditions for reaction application, and the sites where reactions occur 
[16]. Basically, the library is made up of the products of carrying out a certain reaction 
with 𝑛  reactants of type A and 𝑛  reactants of type B. This approach imitates quite 
accurately the steps followed in real chemical synthesis. In fact, the similarity it has with 
in situ chemical synthesis is the reason why this is the approach generally followed by the 
pharmaceutical industry. Examples of the application of reaction-based VCLs in the 
pharmaceutical industry include BI-Claim developed by Boehringer Ingelheim, Eli Lilly’s 
Proximal Collection, and Pfizer global virtual library (PGVL) [17–19]. All these VCLs were 
built using prevalidated or reported reactions as well as accessible chemical reagents. 
Similarly, Humbeck et al. developed CHIPMUNCK, a VCL that covers over 95 million 
compounds [20]. This combinatorial database is composed of three sub-libraries, each 
being the product of a special set of in-silico-performed reactions: heterocycle forming 
reactions, medicinal chemistry reactions, and multicomponent reactions. Another 
example of a VCL based on a synthetic route is ZINClick [21]. This combinatorial library 
contains over 16 million 1,4-disubstituted-1,2,3-triazoles that can by synthesized via a 
“click” 1,3-dipolar cycloaddition reaction between azides and alkynes catalyzed by 
copper salts. Similarly, Saldívar-González et al. applied a Diversity-Oriented Synthesis 
strategy to design a library of lactams that could be easily synthesized by performing a 
series of intramolecular paring reactions to form an amide bond between carboxylic acids 
and primary or secondary amines [22]. 

The other main approach to VCL design is that based on a scaffold structure. This 
method consists in the determination of a common skeleton with variable sites tagged as 
R1, R2, R3… Rn, where each one is associated with a list of possible substituents [23]. This 
approach is ideal in those cases where there are different synthetic routes described to 
obtain a common scaffold [24]. This type of VCL is focused on a specific target, structural 
class, or pharmacophore as it stresses the exploration of a specific area of the chemical 
space, resulting in a small number of structurally related compounds based on a known 
target or family [24]. Examples of this type of VCL include the combinatorial library of 
1001 6-fluoroquinolones developed by Bueso-Bordils et al. [25] to identify new 
compounds with antibacterial activity against methicillin-resistant Staphylococcus aureus 
(MRSA). The library was built using a 6-fluoroquinolone skeleton with structural 
variations in positions 1, 7, and 8. Similarly, Kouman et al. designed a VCL based on a 
benzamide scaffold to identify new Mycobacterium tuberculosis 2-trans enoyl-acyl carrier 
protein reductase inhibitors with favorable pharmacokinetic profiles [26]. Lauro et al. 
have also built a library containing approximately 2.0 × 104 virtual compounds by 
following a multicomponent-based chemical route for the decoration of the 2,4-
thiazolidinedione core [27]. 

2.2. Generation of Combinatorial Libraries 
Virtual combinatorial libraries can be generated using different computational tools 

and software [28]. Table 1 summarizes different tools that can be used to build VCLs of 
small molecules. Some of these tools, such as KNIME, RDKit, DataWarrior, and Reactor, 
allow for the creation of a VCL based on a list of prevalidated reactions [29–34]. Others, 
such as Library Synthesizer, SimLib, MOE, Schrödinger, and Nova, use the scaffold-based 
approach to create the combinatorial library by allowing the user to select a common 
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scaffold or molecular skeleton with tagged substitution points to which different R groups 
will be attached [35–40]. Finally, a third type of model includes those using multi-objective 
algorithms such as CCLab and MoSELECT [29,30]. In this case, the tool does not only 
provide a set of combinatorial compounds, but also provides filtering options regarding 
aspects such as synthesis cost, drug-likeness, physicochemical properties, and structural 
diversity. These tools allow the relationship between different objectives to be explored 
with competing objectives easily identified. Thus, the library designer can make an in-
formed choice on which solution to explore. 

Table 1. Examples of chemoinformatic tools available to create chemical libraries of small molecules. 
(Adapted from Saldívar-González et al. [28]). 

Tool/Software Main Features Ref. 

CCLab Based on a multi-objective genetic algorithm, includ-
ing synthesis cost and drug-likeness. [29] 

MoSELECT 
Based on a multi-objective genetic algorithm, includ-
ing diversity and “drug-like” physicochemical prop-
erties, and a fitness function.  

[30] 

KNIME Based on generic reactions.  [31] 
RDKit Based on generic reactions.  [32] 

DataWarrior Molecules are designed following a given generic re-
action and a list of real reactant structures. 

[33] 

Library synthesizer Creates libraries through specification of a central 
scaffold with connection points and a list of R groups. 

[35] 

SimLib v2.0 Libraries are built using SMILES and a scaffold-based 
approach. 

[36] 

GLARE Allows one to optimize reagent lists for the design of 
combinatorial libraries. 

[41] 

Reactor (Che-
mAxon) 

Library generated using generic reactions and consid-
ering reaction rules that yield chemically feasible 
products. 

[34] 

Molecular Operating 
Environment (MOE) 

Scaffold-based. New chemical compounds are gener-
ated by attaching R groups to a common skeleton 
with marked points. 

[37] 

Schrödinger Creates library by substituting attachments on a core 
structure with fragments from reagent compounds. 

[38] 

Nova Uses central scaffolds and a list of R groups. [39] 
ChemDraw Uses central scaffolds and a list of R groups. [40] 

3. Virtual Screening 
Virtual screening can be defined as a computational technique that is generally used 

in the early stages of the drug discovery process to search libraries of small molecules to 
identify chemical compounds that are likely to bind to one or several drug targets [42]. In 
other words, VS is a step-by-step method with a series of filters able to narrow down and 
choose a set of lead-like hits with potential biological activity against intended drug tar-
gets [43]. Essentially, VS could be considered as an experimental high-throughput screen-
ing (HTS) performed in silico [44]. VS presents two main advantages when compared to 
the traditional experimental HTS. Firstly, it acts as a filter, selecting only those candidates 
with the most favorable characteristics to be active, which can then be tested in vitro. This 
leads to the second main advantage, which is the fact that, since the compounds studied 
do not necessarily exist, their “testing” does not consume valuable substance material, 
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which, in turn, improves the time- and cost-effectiveness of the drug development pro-
cess. Therefore, any molecule can, in theory, be evaluated using VS. 

 

3.1. Methods Used in Virtual Screening 
Virtual screening techniques can be grouped into two major categories, depending 

on the type of information used to develop the screening models. Ligand-based virtual 
screening relies on structural and physicochemical properties of the chemical scaffold of 
known active and inactive molecules and is based on the molecular similarity principle 
[7]. On the other hand, SBVS exploits the three-dimensional structure of the target protein 
[9]. In the following, we will describe different methodologies used in LBVS and SBVS. 

3.1.1. Ligand-Based Virtual Screening (LBVS) 
As was mentioned above, LBVS is based on molecular similarity through the com-

parison of different structural and physicochemical properties [7]. The main hypothesis 
behind LBVS is that similar compounds will cause similar biological effects. Essentially, 
large ligand libraries are searched to identify compounds with similar chemical properties 
or shapes to molecules with known pharmacological activity, which can in turn result in 
the identification of new active compounds [45]. The search can be performed using sev-
eral screening methods that differ on the measure of similarity, ranging from two-dimen-
sional descriptors to shape comparisons and three-dimensional descriptors. 

Quantitative Structure–Activity Relationship (QSAR) models are one of the main 
methods used in LBVS. These models can identify the correlation between structure-based 
molecular descriptors and biological activity [46]. Traditionally, these models were used 
retrospectively, with scientists focused on developing explanatory models of existing data 
[47]. However, the substantial increase in the size of experimental datasets available has 
led to an increase in the use of QSAR models as a virtual screening tool to discover active 
compounds in chemical databases and VCLs [48]. There are many QSAR approaches that 
differ on the structural parameters, also known as descriptors, used to characterize mole-
cules as well as on the mathematical approaches used to establish the correlation between 
descriptor values and pharmacological activity [49]. 

The molecular descriptors used in QSAR models can be divided into five groups: 
topological, geometrical, thermodynamic, electronic, and constitutional [50–52]. Topolog-
ical and geometrical descriptors represent the connectivity of atoms in a molecule as well 
as its shape but, while topological descriptors are based on 2D molecular graphs, geomet-
rical descriptors are calculated from the 3D coordinates of the atoms. Thermodynamic 
descriptors relate the chemical structure to an observed chemical behavior. Examples of 
these include molar refractivity as a combined measure of molecular size and polarizabil-
ity, log P to characterize the hydrophobicity of the molecule, and solvation free energies 
[53]. Electronic descriptors describe electronic aspects of the molecule or atom bonds such 
as the charge distribution in a molecule. Lastly, constitutional descriptors reflect simple 
chemical information about a molecule, such as the molecular weight or the number of 
bonds in the molecule. 

There are many mathematical methods used to build the QSAR predictive models. 
These could be grouped into linear and machine learning approaches [54]. Linear meth-
ods, which include linear discriminant analysis, multiple linear regression, and partial 
least squares, among others, fit data to an equation and report the coefficients derived 
from it. On the other hand, machine learning methods, among which one can find neural 
networks and support vector machines, process input information and recognize patterns. 

Another widely used LBVS approach is pharmacophore-based modeling. In this 
case, different algorithms are applied to identify configurations or spatial arrangements 
of chemical features that are common to molecules with a known activity [55]. These 
chemical features include, but are not limited to, hydrogen bonds, charges, and hydro-
phobic areas [56]. The analysis can be carried out in either a 2D or 3D space [57]. 
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Pharmacophore models are based on the principle that novel compounds able to fulfill a 
certain interaction pattern regarding the aforementioned chemical features should bind 
and show comparable biological activity to that of the known active molecule. Pharmaco-
phore modeling starts with the identification of the pharmacophore of a molecule with a 
desired activity. Subsequently, a conformational analysis is carried out where the flexibil-
ity of small molecules is handled by enumerating multiple conformations for each mole-
cule in the database. Pharmacophore-based LBVS can sometimes be confused with mo-
lecular docking, an SBVS method. The main differences between them will be discussed 
after molecular docking is explained. 

3.1.2. Structure-Based Virtual Screening (SBVS) 
SBVS, also known as target-based virtual screening (TBVS), aims to predict the best 

interaction between ligands and a molecular target to form a complex [9]. In other words, 
the affinity of different ligands to the target is assessed and ranked. Thus, to perform 
SBVS, the 3D structure of the target protein must be known to be able to predict the inter-
actions between the target and each chemical compound in silico [58]. This technique is 
based on a series of algorithms that explore the geometrically feasible alignments of dif-
ferent ligands with a specific drug target [59]. As a result, the ligands are ranked according 
to their affinity with the receptor site, allowing for the identification of molecules that are 
more likely to present pharmacological activity. In order to carry out this ranking, scoring 
functions are used to approximate the binding free energy between the protein and the 
ligand in each docking pose [60]. Lastly, the results are processed to examine the validity 
of the generated pose, undesirable chemical moieties, metabolic liabilities, desired physi-
cochemical properties, lead-likeness, and chemical diversity [61]. 

Scoring functions play a key role in molecular docking. These functions can be di-
vided into three categories: empirical, knowledge-based, and physics-based [62]. Empiri-
cal functions are some of the most widely used as they are easy to compute. These func-
tions try to capture relevant elements of binding free energy, such as solvent accessible 
surface, entropy, and hydrogen bonds, to then fit them in experimental data [63]. In fact, 
because of their simple energy terms, these scoring functions are able to predict binding 
affinity, ligand pose, and virtual screening with low computing costs; however, their ac-
curacy is lower compared with the other two types of functions [64]. On the other hand, 
knowledge-based scoring functions calculate the desired pairwise potentials from three-
dimensional structures of a large set of protein–ligand complexes based on the inverse 
Boltzmann statistic principle [65]. In this case, the size and quality of the databases used 
to derive the statistical potentials have a great impact on the accuracy of knowledge-based 
scoring functions. Lastly, physics-based scoring functions include scoring functions based 
on force field, solvation model, and quantum mechanics methods [66–68]. These scoring 
functions can directly compute the interactions between the atoms of a protein and ligand, 
having a greater predictive accuracy than other types of scoring functions due to consid-
eration of the enthalpy, solvation, and entropy. 

Having seen molecular docking and pharmacophore-based VS, it is easy to confuse 
one with the other as both aim to identify molecules capable of binding to a certain drug 
target. However, their difference relies, essentially, on the methodology. While pharma-
cophore-based VS uses the structures of ligands with known pharmacological activity to 
predict chemical structures that should bind to proteins in the same way, molecular dock-
ing requires the defined 3D structure of the target protein to study which compounds will 
bind more effectively to it and, thus, have the higher probability of being pharmacologi-
cally active [64,69]. 

4. Applications and Current Trends 
The different methodologies of VS have been widely used for the discovery and de-

velopment of new drugs. This VS can be either performed on virtual combinatorial librar-
ies or on large databases of chemical compounds available online (Figure 1). The number 
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of chemical databases available for VS has increased exponentially in the last few years as 
the advances in computational methods have vastly increased the information output 
[70]. These databases include chemical, biomolecular, drug–target interaction, and/or dis-
ease information and can be used for drug discovery and drug repurposing. Some of the 
most widely used databases in medicinal chemistry include PubChem, ZINC, ChemSpi-
der, and DrugBank [71–74]. In the following, we will present successful examples of the 
different VS techniques applied in both VCLs and chemical databases for the discovery of 
new drugs in the early stages of the development process. 

 
Figure 1. General flowchart used in virtual screening. 

As was mentioned earlier, QSAR models were initially used to interpret the struc-
ture–activity relationship of lead compounds. However, this technique evolved and 
QSAR models began to be applied in the prediction of pharmacological activity. For ex-
ample, Bueso-Bordils et al. built a QSAR model based on linear discriminant analysis to 
predict antibacterial activity against MRSA [25]. They used this model to virtually screen 
a fluoroquinolone VCL, identifying 117 theoretically active molecules of which five were 
synthesized and three showed anti-MRSA activity comparable to that of ciprofloxacin. 
Similarly, Suay-Garcia et al. developed a tree-based QSAR model based on quinolones 
that was applied to the DrugBank database to screen for active compounds against Esch-
erichia coli [75]. The model identified 134 drugs with theoretical activity against E. coli of 
which eight were already commercialized as antibacterial drugs, 67 were approved for 
different pathologies, and 55 were drugs in experimental stages. The same methodology 
was used by Luo et al. to develop a binary classification QSAR prediction model that was 
used to mine drug-like, diversity, and GPCR-targeted libraries to identify novel anxiolyt-
ics and potential antischizophrenic drugs [76]. Another QSAR model was developed us-
ing GUSAR software to identify novel HIV-1 integrase inhibitors [77]. This model was 
used to virtually screen a subset of 308 structurally distinct compounds from the Bind-
ingDB database. Of these, 236 compounds were selected as potential candidates for syn-
thesis due to their good druglikeness. Finally, six compounds were chosen to be synthe-
sized and one of them was experimentally confirmed to inhibit the strand transfer reaction 
in HIV. More recently, Zaki et al. developed a balanced QSAR model based on the genetic 
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similarity between SARS-CoV-2 and SARS-CoV to identify novel molecules with inhibi-
tory potential against the main protease of SARS-CoV-2 [78]. The study combines a pre-
diction QSAR model along with molecular docking and molecular dynamics to screen 
26,467 food compounds and 360 heterocyclic variants of a benzotriazole–indole hybrid 
molecule to identify promising hits to treat COVID-19. 

Pharmcophore-based models are the other most common LBVS approach in virtual 
screening. For instance, a pharmacophore-based model was developed to identify poten-
tial σ1 receptor ligands to treat Alzheimer’s Disease [79]. This model was applied to screen 
8543 compounds from the Life Chemicals database, of which five candidates presented 
excellent druglikeness and ADMET properties. Along these lines, Liu et al. generated a 
pharmacophore model from the structures of active amino alcohols to perform a virtual 
screening to discover novel compounds with anti-echinococcal activity [80]. The screening 
was performed on the ZINC15 database and, out of the 62 compounds selected by the 
model, 10 were found to be experimentally active against Echinococcus multilocularis. Kou-
man et al. followed a similar procedure to identify benzamides capable of inhibiting 2-
trans enoyl-acyl carrier protein reductases in Mycobacterium tuberculosis [26]. In this case, 
a pharmacophore model generated from the active conformations of N-benzyl-4-((het-
eroaryl)methyl) benzamides (BHMBs) was used as a virtual screening tool of novel ana-
logs included in a VCL of compounds containing benzamide scaffolds. The model identi-
fied 90 new and potent BHMBs with enhanced cell membrane permeability and high hu-
man oral absorption compared with current treatments for tuberculosis. Screening of a 
virtual combinatorial library with a pharmacophore model was also used to identify novel 
µ-opioid receptor inverse agonists to treat narcotic overdose or drug addiction [81]. More 
specifically, a library including 19,800 tetrapeptides was created to perform the virtual 
screening and three candidates were selected for binding assays.  

Regarding SBVS, molecular docking is the most widely used technique. However, 
the latest VS trends aim for a consensus approach in which different VS techniques are 
used in combination to optimize results. Thus, molecular docking is generally found to be 
used along with LBVS models. For example, a combination of a pharmacophore-based 
model with 3D-QSAR and molecular docking was used to virtually screen the ZINC and 
ASINEX databases to identify potential dipeptidyl peptidase IV inhibitors to be used as 
oral antidiabetics [82]. More specifically, the pharmacophore and 3D QSAR model was 
used to virtually screen the aforementioned databases and the hit molecules were used to 
design a VCL that was evaluated using molecular docking. A similar procedure was fol-
lowed by Bommu et al. to predict potential epigallocatechin gallate (EGCG) analogs 
against epidermal growth factor receptors [83]. In this case, log P and log S predictions 
along with the toxicity endpoint were modeled using QSAR, which was combined with a 
pharmacophore model and molecular docking to identify seven high-potential EGCG an-
alogs as promising pharmacological, anticancer, and drug-like templates that could be 
used towards moderating lung cancer progression. This consensus approach was also 
used to identify natural compounds against mosquito-borne Chikungunya virus targets 
[84]. To do so, a subset of compounds from natural sources found on PubChem was stud-
ied using molecular docking and the selected potential ligands were subjected to 3D-
QSAR studies to predict biological activity. Finally, Lipinski’s rule and ADMET studies 
were also performed, leading to the identification of the four best-fit compounds of natu-
ral origin against targets of the Chikungunya virus. 

5. Conclusions 
Virtual Combinatorial Chemistry and the different Virtual Screening tools are pre-

sented as a key tool in the development of new drugs in a time- and cost-effective manner. 
These in silico methods, whether combined or on their own, accelerate the drug discovery 
process by acting as filters and allowing experimental evaluation to be focused only on 
compounds with the most drug-likeness. 
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